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Abstract In Choreographic Programming, a distributed

system is programmed by giving a choreography, a global

description of its interactions, instead of separately spec-

ifying the behaviour of each of its processes. Process

implementations in terms of a distributed language can

then be automatically projected from a choreography.

We present Linear Compositional Choreographies

(LCC), a proof theory for reasoning about programs

that modularly combine choreographies with processes.

Using LCC, we logically reconstruct a semantics and a

projection procedure for programs. For the first time,

we also obtain a procedure for extracting choreogra-

phies from process terms.

Keywords Choreographies · Curry-Howard Isomor-

phism · Linear Logic · Programming Languages

1 Introduction

Choreographic Programming [17] is a programming pa-

radigm for distributed systems inspired by the “Alice
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and Bob” notation, where programs, called choreogra-

phies [25,1], are global descriptions of how endpoint

processes interact (exchange messages) during execu-

tion. The typical set of programs defining the actions

performed by each process is then generated by means

of endpoint projection (EPP) [21,14,9,4,10,18].

The key aspect of choreography languages is that

process interactions are treated linearly, i.e., they are

executed exactly once. Previous work [9,10,18] devel-

oped correct notions of EPP by using typing disciplines

based on session types [13], linear types for communi-

cations inspired by linear logic [12]. Despite the deep

connections between choreographies and linearity, the

following question remains unanswered:

Is there a formal connection between choreogra-

phies and linear logic?

Finding such a connection would contribute to a more

precise understanding of choreographies, and possibly

lead to answering open questions about them.

A good starting point for answering our question

is a recent line of work on a Curry-Howard correspon-

dence between the internal π-calculus [22] and linear

logic [7,26]. In particular, proofs in Intuitionistic Linear

Logic (ILL) correspond to π-calculus terms (proofs-as-

programs) and ILL propositions correspond to session

types [7]. An ILL judgement describes the interface of

a process, for example:

P . x :A, y :B ` z : C

Above, P is a process and the judgement P . x :A, y :

B ` z : C reads as follows: process P needs to be com-

posed with other processes that provide the behaviours

(represented as types) A on channel x and B on chan-

nel y, in order to provide behaviour C on channel z.

Note that process P may contain nested processes that
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engage in internal communications that are not made

visible at the level of session types. In contrast, chore-

ographies are descriptions of the internal interactions

among the processes inside a system, and therefore type

systems for choreographies focus on checking such inter-

nal interactions [9,10]. It is thus unclear how the linear

typing of ILL can be related to choreographies.

In this paper, we present Linear Compositional Chore-

ographies (LCC), a proof theory inspired by linear logic

that seamlessly integrates the typing of internal com-

munications with that of interfaces for external com-

position, using session types. The programs typed in

LCC modularly combine choreographies with processes

in the internal π-calculus. The key aspect of LCC is

that it extends ILL to capture interactions among in-

ternal processes in a system. Thanks to LCC, not only

do we obtain a logical understanding of choreographic

programming, but we also provide the foundations for

tackling the open problem of extracting a choreography

from a system of processes.

This article is an extended version of the conference

paper that appeared in the proceedings of the 25th In-

ternational Conference on Concurrency Theory (CON-

CUR 2014).

1.1 Main Contributions

We summarise our main contributions.

Linear Compositional Choreographies (LCC). We present

LCC, a generalisation of ILL where judgements can also

describe the internal interactions of a system (§ 3). LCC

proofs are equipped with proof terms, called LCC pro-

grams, following the standard Curry-Howard interpre-

tation of proofs-as-programs. LCC programs are in a

language where choreographies and processes are mod-

ularly combined by following protocols given in the type

language of LCC (à la session types [13]).

Logically-derived semantics. We derive a semantics for

LCC programs from our proof theory (§ 4): (i) some rule

applications in LCC proofs can be permuted, defining

equivalences on LCC programs (§ 4.1); (ii) some proofs

can be safely reduced to smaller proofs, which corre-

sponds to executing communications (§ 4.2). By follow-

ing our semantics, we prove that all internal commu-

nications in a system can be reduced (proof normali-

sation), i.e., LCC programs are deadlock-free by con-

struction (§ 4.3).

Choreography Extraction and Endpoint Projection. LCC

consists of two fragments: the action fragment, which

manipulates the external interfaces of processes, and

the interaction fragment, which handles internal com-

munications. We derive automatic transformations from

proofs in either fragment to proofs in the other, yield-

ing procedures of endpoint projection and choreography

extraction (§ 5) that preserve the semantics of LCC pro-

grams. To our knowledge, this is the first work address-

ing extraction for a fragment of the π-calculus, pro-

viding the foundations for a new development method-

ology where programmers can compose choreographies

with existing process code (e.g., software libraries) and

then obtain a choreography that describes the overall

behaviour of the entire composition.

2 From ILL to LCC

We informally introduce processes and choreographies,

and revisit the Curry-Howard correspondence between

the internal π-calculus and ILL [7]. Building on ILL,

we introduce the intuition behind the proof theory of

LCC.

Processes and Choreographies. Consider the following

processes:

Pclient = x(tea); x(tr); tr(p)

Pserver = x(tea); x(tr); tr(p); b(m)

Pbank = b(m)

(1)

The three processes above, given as terms in the lan-

guage of the internal π-calculus [22], denote a system

composed by three endpoints: client, server, and bank.

The parallel execution of these endpoints is such that:

client sends to server a request for tea on a channel

x; then, server replies to client on the same channel x

with a new channel tr (for transaction); client uses tr

for sending to server the payment p; after receiving the

payment, server deposits some money m by sending it

over channel b to bank.

Programming with processes is error-prone, since

they do not give an explicit description of how end-

points interact [17]. By contrast, choreographies pro-

vide a clear specification of how messages flow dur-

ing execution [25]. For example, consider the following

choreography:

1. client → server : x(tea); server → client : x(tr);

2. client → server : tr(p); server → bank : b(m)
(2)

The choreography in (2) defines the communications

that occur in (1). We read client → server : x(tea) as

“process client sends tea to process server through chan-

nel x”.
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ILL and the π-calculus. The processes in (1) can be

typed by ILL, using propositions as session types that

describe the usage of channels. For example, channel x

in Pclient has type string ⊗ (string ( end) ( end,

meaning: send a string; then, receive a channel of type

string ( end and, finally, stop (end). Concretely, in

process Pclient , the channel of type string ( end re-

ceived through x is channel tr. The type of tr says

that the process sending tr, i.e., Pserver , will use it to

receive a string; therefore, process Pclient must im-

plement the dual operation of that implemented by

Pserver , i.e., the output tr(p). Similarly, channel b has

type int ⊗ end in Pserver . We can formalise this intu-

ition with the following three ILL judgements, where

A = string⊗(string( end)( end andB = int⊗end:

Pclient . · ` x :A

Pserver . x :A ` b :B

Pbank . b :B ` z :end

Recall that the judgement Pserver . x :A ` b :B reads as

“given a context that implements channel x with type

A, process Pserver implements channel b with type B”.

Given these judgements, we can compose the processes

Pclient , Pserver , and Pbank using channels x and b as:

(νx)
(
Pclient |x (νb) ( Pserver |b Pbank )

)
(3)

The compositions in (3) can be typed using the Cut rule

of ILL:

P . ∆1 ` x :A Q . ∆2, x :A ` y :B

(νx) (P | Q) . ∆1, ∆2 ` y :B
Cut (4)

Above,∆1 and∆2 are sets of typing assignments (z :D).

We interpret rule Cut as “If a process provides A on

channel x, and another requires A on channel x to pro-

vide B on channel y, their parallel execution provides

B on channel y”.

Proofs in ILL correspond to process terms in the

internal π-calculus [7], and applications of rule Cut can

always be eliminated by a proof normalisation proce-

dure known as cut elimination. This procedure provides

a model of computation for processes. We illustrate a

cut reduction, a step of cut elimination, in the following

(we omit process terms for readability):

C1 ` A C2 ` B
C1, C2 ` A⊗B

⊗R
A,B ` D
A⊗B ` D ⊗L

C1, C2 ` D
Cut

=⇒

C1 ` A
C2 ` B A,B ` D

C2, A ` D
Cut

C1, C2 ` D
Cut

The proof on the left-hand side applies a cut to two

proofs, one providing A ⊗ B, and the other providing

D when provided with A⊗B. The cut-reduction above

(=⇒) shows how this proof can be simplified to a proof

where the cut on A ⊗ B is reduced to two cuts on the

smaller formulas A and B. A cut-reduction corresponds

to executing a communication between two processes,

one outputting on a channel of type A ⊗ B, and an-

other inputting from the same channel [7]. Executing

the communication yields a new system corresponding

to the proof on the right-hand side. Cut-free proofs cor-

respond to systems that have successfully completed all

their internal communications.

Towards LCC. Cut reductions in ILL model the in-

teractions between the internal processes in a system,

which is exactly what choreographies describe syntacti-

cally. Therefore, in order to capture choreographies, we

wish our proof theory to reason about transformations

such as the cut reduction above.

ILL judgements give us no information on the ap-

plications of rule Cut in a proof. In contrast, standard

type systems for choreographies [9,10,18] have different

judgements: instead of interfaces for later composition,

they contain information about internal processes and

their interactions. Following this observation, we make

two important additions to ILL judgements. First, we

extend them to describe multiple processes by using hy-

persequents, i.e., collections of multiple ILL sequents [2].

Second, we represent the connections between sequents

in a hypersequent, since two processes need to share a

common connection for interacting. The following is an

LCC judgement:

P . ∆1 ` x :•A | ∆2, x :•A ` y :B

Above, we composed two ILL sequents with the oper-

ator |, which captures the parallel composition of pro-

cesses. The two sequents are connected through channel

x, denoted by the marking •. We will use hypersequents

and marking let us reason about interactions by han-

dling both ends of a connection.

LCC judgements can express cut elimination as a

proof. For example,

Q . z1 :C1, z2 :C2 ` x :•A⊗B | x :•A⊗B ` w :D

represents the left-hand side of the cut reduction seen

previously, where a process requires C1 and C2 to per-

form an interaction of type A⊗B with another process

that can then provide D. Importantly, the connection

of type A⊗B between the two sequents cannot be com-

posed with external systems, because it is used for inter-

nal interactions. Using our judgements, we can capture
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cut reductions:

Q′ .z1 :C1`y :•A | z2 :C2 ` x :•B | y :•A, x :•B ` w :D

The new judgement describes a system that still re-

quires C1 and C2 in order to provide D, but now with

three processes: one providing A from C1, one providing

B from C2 and, finally, one using A and B for provid-

ing D. Also, the first two sequents are connected to the

third one. This corresponds to the right-hand side of

the cut reduction that we have seen previously, where

process Q reduces to process Q′ .

We can now express the different internal states of

a system before and after a cut reduction, by the struc-

ture of its connections in our judgements. This is the

intuition behind the new rules in our proof theory for

typing choreographies, which we present in § 3.

3 Linear Compositional Choreographies

We present Linear Compositional Choreographies (LCC),

a proof theory for typing programs that can modularly

combine choreographies and processes. We start by in-

troducing LCC types and typing contexts; then, we de-

fine the syntax of LCC programs, which consists of pro-

cess and choreography terms; and, finally, we give the

rules of our proof theory.

3.1 Types and Hypersequents

Types. LCC propositions, or types, are defined as:

(Propositions)

A,B ::= 1 | A⊗B | A( B | A⊕B | A&B

LCC propositions are the same as in ILL: ⊗ and (
are the multiplicative connectives, while ⊕ and & are

additives. The type 1 is the atomic proposition. A type

A ⊗ B is interpreted as “output a channel of type A

and then behave as specified by type B”. On the other

hand, A ( B, the linear implication, reads “receive a

channel of type A and then continue as B”. Proposition

A⊕B selects a branch of type A or B, while A&B offers

the choice of A or B.

Hypersequents. We introduce hypersequents, i.e., col-

lections of ILL sequents, that we will use to type the be-

haviour of programs on channels. Their syntax is given

below:

(Hypersequents) Ψ ::= ∆ ` T | Ψ |Ψ
(Contexts) ∆,Θ ::= · | ∆,T
(Element) T ::= x :A | x :•A

In the syntax of hypersequents, an element assigns a

type to a channel. Elements may be marked by •, de-

noting that the channel is shared in a connection, as

anticipated in § 2. Contexts, as in ILL, are sets of ele-

ments. A hypersequent is then a collection of some ILL

sequents: ∆1 ` T1 | . . . | ∆n ` Tn.

We consider contexts ∆ and hypersequents Ψ equiv-

alent up to associativity and commutativity. Given a

sequent ∆ ` T , we call ∆ its hypotheses and T its con-

clusion.

Following the ideas that we outlined in § 2, we in-

tend to use hypersequents in order to represent the

structure of connections among participants in a sys-

tem. We assume that a channel name can appear at

most once in any hypersequent, unless it is marked

with •. On the other hand, we assume that bulleted

variables appear exactly twice in a hypersequent, once

as a hypothesis and once as a conclusion of two respec-

tive sequents which we say are then “connected”. In

the proof theory that we will present, a provable hy-

persequent will always have exactly one sequent with

a non-bulleted conclusion, which we call the conclusion

of the hypersequent. Similarly, we call non-bulleted hy-

potheses the hypotheses of the hypersequent.

Graphically, we can think of a provable hyperse-

quent as a tree of sequents, where the root is the only

sequent with a non-bulleted conclusion. Then, a sequent

has a child for each bulleted variable in its hypotheses,

which is another sequent that has the same bulleted

variable as conclusion. For example, consider the hy-

persequent from § 2:

z1 :C1 ` y :•A | z2 :C2 ` x :•B | y :•A, x :•B ` w :D

We graphically represent the hypersequent above as:

y :•A, x :•B ` w :D

z1 :C1 ` y :•A z2 :C2 ` x :•B

The root of this hypersequent is the sequent y : •A, x :

•B ` w :D. Its children are z1 :C1 ` y :•A and z2 :C2 `
x :•B, which are respectively connected to the root by

their conclusions y :•A and x :•B.

Remark 1 (Bullet annotations) For clarity, we chose to

adopt bullet annotations in order to highlight connec-

tions among sequents in a hypersequent. However, for

provable hypersequents, such connections can actually

be inferred by looking at channel names, i.e., a channel

that occurs twice in a hypersequent is always connected,

whereas a channel that occurs once is not.
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3.2 Programs

We give the syntax of LCC programs (to which we also

refer as proof terms) in Fig. 1. The syntax is a variation

of that of the internal π-calculus, extended with choreo-

graphic primitives. The internal π-calculus allows us to

focus on a simple, yet very expressive fragment of the

π-calculus [23], as in [7]. Terms in LCC can be processes

performing communication actions or choreographies of

interactions. We explain them separately in the follow-

ing.

Processes. An (output) x(y); (P |Q) sends a fresh name

y over channel x and then proceeds with the parallel

composition P |Q . Dually, (input) x(y);P receives y

over x and then proceeds as P . In a (left sel) x.inl;P ,

we send over channel x the choice of the left branch

offered by the receiver. The term (right sel) x.inr;P
selects the right branch instead. Selections communi-

cate with the term (case) x.case(P,Q) , which offers a

left branch P and a right branch Q . The term (par)

P |x Q models parallel composition; here, differently

from the output case, the two composed processes are

not independent, but share the communication chan-

nel x. The term (res) is the standard restriction oper-

ator, as found in typical process calculi. Terms (close)

and (wait) model, respectively, the request and accep-

tance for closing a channel, following real-world closing

handshakes in communication protocols such as TCP.

Closing channels explicitly is unnecessary for our devel-

opment, but will make the presentation of our results

clearer (cf. [24], where a similar notation is adopted).

Choreographies. The term (res) belongs also to the chore-
ography fragment of LCC programs. A (global com)
−→
x(y);P describes a system where a fresh name y is

communicated over a channel x, and then continues as

P , where y is bound in P . Note that, in order to follow

the standard choreography notation, we use an arrow

above our choreographic terms: this is not to be con-

fused with standard vector notation. The terms (global

left sel) and (global right sel) model systems where, re-

spectively, a left branch or a right branch is selected on

channel x. Unused branches in global selections, e.g., Q

in
−→
x.l(P,Q) , are unnecessary in our setting since they

are never executed; however, their specification will be

convenient for our technical development of endpoint

projection, which will follow our concretisation trans-

formation in LCC. Finally, term (global close) models

the closure of a channel.

Note that, differently from § 2, we omit process iden-

tifiers in choreographies since our typing will make them

redundant (cf. § 8).

3.3 Judgements and Rules

A judgement in LCC has the form P . Ψ , where Ψ is a

hypersequent and P is a proof term. If we regard LCC

as a type theory for our term language, we say that the

hypersequent Ψ types the term P .

Valid judgements can be derived using the proof the-

ory of LCC, which consists of two fragments: the action

fragment and the interaction fragment. The action frag-

ment reasons about processes, whereas the interaction

fragment reasons about choreographies.

3.3.1 Action Fragment

The action fragment includes the left and right rules for

the unit and the multiplicative and additive connectives

of ILL, adapted to hypersequents. Left and right rules

are reported in Fig. 2. The fragment includes also the

structural rules Conn and Scope, which we introduce

separately.

Unit. The rules for unit are standard. Rule 1R is the

only axiom of LCC; it types a process that requests to

close channel x and terminates. Symmetrically, rule 1L
types a process that waits for a request to close x; after

the channel is closed, it cannot be used anymore in the

continuation P .

Tensor. Rule ⊗R types the output x(y); (P |Q) , com-

bining the conclusions of the hypersequents used to

type the terms P and Q . The continuations P and

Q will handle, respectively, the transmitted channel

y and channel x. Ensuring that channels y and x are

handled by different parallel processes avoids potential

deadlocks caused by their interleaving [7,26]. Dually,

rule ⊗L types an input x(y);P , by requiring the con-

tinuation P to use channels y and x following their

respective types.

Linear Implication. The proof term for rule ( R is

an input x(y);P , meaning that the process needs to

receive a name of type A before offering behaviour B on

channel x. Rule ( L types the dual term x(y); (P |Q) .

Note that the prefixes in the proof terms are the same

as the ones for tensor rules. This does not introduce

any ambiguity, since proof terms are typed differently

in the premises and, thus, it is never the case that both

connectives could be used for typing the same term [7].

In particular, in the right premises of ⊗R and ( L,

variable x appears on the right and on the left of `,

respectively.
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P,Q,R ::= x(y); (P |Q) (output) | x(y);P (input)

| x.inl;P (left sel) | x.inr;P (right sel)

| x.case(P,Q) (case) | P |x Q (par)

| close[x] (close) | wait[x];P (wait)

| (νx)P (res)


Processes

Choreographies

 |
−→
x(y);P (global com) |

−→
close[x] ;P (global close)

|
−→
x.l (P,Q) (global left sel) | −→x.r (P,Q) (global right sel)

Fig. 1 LCC programs.

P . Ψ1|∆1 ` y :A Q . Ψ2|∆2 ` x :B

x(y); (P |Q) . Ψ1|Ψ2|∆1,∆2 ` x :A⊗B
⊗R

P . Ψ |∆, y :A, x :B ` T
x(y);P . Ψ |∆,x :A⊗B ` T

⊗L

P . Ψ |∆, y :A ` x :B

x(y);P . Ψ |∆ ` x :A( B
( R

P . Ψ1|∆1 ` y :A Q . Ψ2|∆2, x :B ` T

x(y); (P |Q) . Ψ1|Ψ2|∆1,∆2, x :A( B ` T
( L

close[x] . · ` x :1
1R

P . Ψ |∆,x :A ` T
x.inl;P . Ψ |∆,x :A&B ` T

&L1

Q . Ψ |∆,x :B ` T
x.inr;Q . Ψ |∆,x :A&B ` T

&L2

P . Ψ |∆ ` T
wait[x];P . Ψ |∆,x :1 ` T

1L
P . Ψ |∆ ` x :A

x.inl;P . Ψ |∆ ` x :A⊕B
⊕R1

Q . Ψ |∆ ` x :B

x.inr;Q . Ψ |∆ ` x :A⊕B
⊕R2

P . Ψ |∆ ` x :A Q . Ψ |∆ ` x :B

x.case(P,Q) . Ψ |∆ ` x :A&B
&R

P . Ψ |∆,x :A ` T Q . Ψ |∆,x :B ` T

x.case(P,Q) . Ψ |∆,x :A⊕B ` T
⊕L

Fig. 2 Left and Right Rules of the Action Fragment.

Additives. The rules for the additive connectives are

also straightforward. The proof terms are from [7] and

are inspired by standard session typing [13]. We recall

that A⊕B denotes the selection of either A or B from a

choice that offers both options, whereas A&B denotes

the offering of a choice with options A and B. For exam-

ple, rule ⊕R1 types a left selection x.inl;P on a chan-

nel x that appears as the conclusion of a sequent with

A⊕B, meaning that the term provides the behaviour of

selecting from A or B. Rule ⊕R2 is similar, for the right

selection of a branch. Dually, rule ⊕L types the offering

of a choice x.case(P,Q) on a channel x that appears

as a hypothesis with A⊕B, meaning that the term re-

quires the environment to provide another process that

will select from this choice. As for the connectives⊗ and

(, the rules for the connective & are similar to those

for the connective ⊕, with no introduction of ambiguity

for the same reasons.

Connection and Scoping. We pull apart the standard

Cut rule of ILL, as (4) in § 2, and obtain two rules that

depend on hypersequents as an interim place to store

information. The first rule, Conn, merges two hyperse-

quents by forming a connection:

P . Ψ1 | ∆1 ` x :A Q . Ψ2 | ∆2, x :A ` T
P |x Q . Ψ1 | Ψ2 | ∆1 ` x :•A | ∆2, x :•A ` T

Conn

The proof term for Conn is parallel composition: in the

conclusion, the two terms P and Q are composed in

parallel and share channel x. Note that the creation of

the connection on x results in annotating the typing of

x in both sequents with •.
While rule Conn connects the conclusion of a se-

quent to the compatible hypothesis of another sequent,

the second rule, called Scope, scopes a connection by

merging two connected sequents:

P . Ψ | ∆1 ` x :•A | ∆2, x :•A ` T
(νx)P . Ψ | ∆1, ∆2 ` T

Scope

The proof term for Scope is the restriction of the chan-

nel corresponding to the connection that has been scoped.

3.3.2 Interaction Fragment

Connections are first-class citizens in LCC and are sub-

ject to logical reasoning. We give rules for manipulating
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connections, one for each connective, which correspond

to choreographies. Such rules form, together with rule

Scope, the interaction fragment of LCC.

Unit. A connection of type 1 between two sequents can

always be introduced:

P . Ψ | ∆ ` T
−→

close[x];P . Ψ | · ` x :•1 | ∆,x :•1 ` T
1C

Observe that the choreography
−→

close[x];P describes the

same behaviour as the process close[x] |x wait[x];P , and

indeed their typing is the same. In general, in LCC the

typing of process and choreographic terms describing

equivalent behaviour is the same. We will formalise this

intuition in § 5.

Tensor. The connection rule for ⊗ combines two con-

nections between three sequents. Technically, when two

sequents ∆1 ` y : •A and ∆2 ` x : •B are connected

to a third sequent ∆3, y : •A, x : •B ` T , we can merge

the two connections into a single one, obtaining the se-

quents ∆1, ∆2 ` x :•A⊗B and ∆3, x :•A⊗B ` T :

P . Ψ |∆1 ` y :•A|∆2 ` x :•B|∆3, y :•A, x :•B ` T
−→
x(y);P . Ψ |∆1, ∆2 ` x :•A⊗B|∆3, x :•A⊗B ` T

⊗C

Rule ⊗C corresponds to typing a choreographic com-

munication
−→
x(y);P . This rule is the formalisation in

LCC of the cut reduction discussed in § 2. Term P will

then perform communications on channel y with type

A and channel x with type B.

Linear Implication. The rule for ( manipulates con-

nections with a causal dependency: if ∆1 ` y : •A is

connected to ∆2, y : •A ` x : •B, which is connected to

∆3, x : •B ` T , then ∆2 ` x : •A ( B is connected to

∆1, ∆3, x :•A( B ` T .

P . Ψ | ∆1 ` y :•A | ∆2, y :•A ` x :•B | ∆3, x :•B ` T
−→
x(y);P . Ψ | ∆2 ` x :•A(B | ∆1,∆3, x :•A(B ` T

(C

Rule ( C types a communication
−→
x(y);P . The prefix

−→
x(y) is the same as that of rule ⊗C, similarly to the ac-

tion fragment for the connectives ⊗ and(. Differently

from rule ⊗C, the usage of channel x in the continua-

tion P has a causal dependency on y, whereas in ⊗C
the two channels are independent.

Additives. The rules for the additive connectives follow

similar reasoning and are reported in Fig. 3. Rule &C1

types a choreography that selects the left branch on x

and then proceeds as P , provided that x is not used in

Q since the latter is unused.

We call C-rules the interaction rules for manipulat-

ing connections. C-rules represent cut reductions in ILL,

following the intuition presented in § 2.

Example 1 In Fig. 4, we formalise and extend our ex-

ample from § 2 as follows: Process Pclient′ implements a

new version of the client, which selects the right choice

of a branching on channel x and then asks for some

tea; then, it proceeds as Pclient from § 2. Note that we

have enhanced the processes with all expected closing

of channels. The server Pserver′ , instead, now offers to

the client a choice between buying a tea (as in § 2) and

getting a free glass of water. Since the water is free, the

payment to the bank is not performed in this case. In

either case, the bank is notified of whether a payment

will occur or not, respectively right and left branch in

Pbank . The processes are composed as a system in P .

Term C is the equivalent choreographic representa-

tion of P . We can type channel x as (string ⊗ end)⊕
(string ⊗ (string ( end) ( end) in both C and P .

The type of channel b is: end⊕ (string⊗ end). For clar-

ity, we have used concrete data types instead of the

abstract basic type 1. ut

4 Semantics

We now derive an operational semantics for LCC pro-

grams from our proof theory, by obtaining the standard

relations of structural equivalence ≡ and reduction →
as theorems of LCC. For example, the π-calculus rule

(νw) (P |x Q) ≡ (νw)P |x Q (for w 6∈ fn(Q)) can be

derived as a proof transformation, as shown in Fig. 5.

4.1 Commuting Conversions (≡)

The structural equivalence of LCC (≡) is defined in

terms of commuting conversions, i.e., admissible permu-

tations of rule applications in proofs. In ILL, commut-

ing conversions concern the cut rule. However, since in

LCC the cut rule has been split into Scope and Conn, we

need to introduce two sets of commuting conversions,

one for rule Scope, and one for rule Conn. In the se-

quel, we report commuting conversions between proofs

by giving the corresponding process and choreography

terms (the complete LCC proofs that justify these con-

versions are given in [17, Appendix C]).
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P . Ψ | Ψ ′ | ∆1 ` x :•A | ∆2, x :•A ` T Q . Ψ ′ | ∆1 ` x :B

−→
x.l (P,Q) . Ψ | Ψ ′ | ∆1 ` x :•A&B | ∆2, x :•A&B ` T

&C1

P . Ψ | ∆1 ` x :A Q . Ψ | Ψ ′ | ∆1 ` x :•B | ∆2, x :•B ` T
−→
x.r (P,Q) . Ψ | Ψ ′ | ∆1 ` x :•A&B | ∆2, x :•A&B ` T

&C2

P . Ψ | Ψ ′ | ∆1 ` x :•A | ∆2, x :•A ` T Q . Ψ ′ | ∆2, x :B ` T
−→
x.l (P,Q) . Ψ | Ψ ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T

⊕C1

P . Ψ | ∆2, x :A ` T Q . Ψ | Ψ ′ | ∆1 ` x :•B | ∆2, x :•B ` T
−→
x.r (P,Q) . Ψ | Ψ ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T

⊕C2

Fig. 3 Interaction Fragment, Rules for the Additives.

Pclient′ = x.inr; x(tea);
(
close[tea] | x(tr); tr(p); (close[p]|wait[tr]; close[x] )

)

Pserver′ = x.case

 x(water); b.inl; wait[water]; wait[x]; close[b],

x(tea); x(tr);

(
tr(p); wait[tea]; wait[p]; close[tr] |
b.inr; b(m);

(
close[m] | wait[x]; close[b]

))


Pbank′ = b.case( wait[b]; close[z], b(m); wait[m]; wait[b]; close[z] )

P = (νx) (Pclient′ |x (νb) (Pserver′ |b Pbank′))

C = (νx) (νb)
−→
x.r


x(water); b.inl; wait[water]; wait[x]; close[b],

−→
x(tea);

−→
x(tr);

−→
tr(p);

−→
b.r

wait[b]; close[z],

−→
b(m);

−→
close[tea, p, tr,m, x, b]




Fig. 4 Beverage Dispenser Example.

P . Ψ | ∆1 ` y : •D | ∆, y : •D ` x : A Q . Ψ ′ | ∆′, x : A ` T

P |x Q . Ψ | Ψ ′ | ∆1 ` y : •D | ∆, y : •D ` x : •A | ∆′, x : •A ` T
Conn

(νy) (P |x Q) . Ψ | Ψ ′ | ∆1,∆ ` x : •A | ∆′, x : •A ` T
Scope

is equivalent to (≡)

P . Ψ | ∆1 ` y :•D | ∆, y :•D ` x : A

(νy)P . Ψ | ∆1,∆ ` x : A
Scope

Q . Ψ ′| ∆′, x : A ` T

(νy)P |x Q . Ψ | Ψ ′ | ∆1,∆ ` x : •A | ∆′, x : •A ` T
Conn

Fig. 5 A Proof Transformation, Structural Equivalence.

Commuting Conversions for Scope. Commuting con-

versions for Scope correspond to permuting restriction

with other operators in LCC programs. We report them

in Fig. 6, where we assume variables to be distinct.

For example, [Scope/ ⊗ R/L] says that an application

of rule Scope to the conclusion of rule ⊗R can be com-

muted so that we can apply⊗R such that the conclusion

of Scope becomes its left (L) premise. Note that the

top-level LCC terms of some cases are identical, e.g.,

[Scope/ ⊗ R/L] and [Scope/( L/L], but the subterms

are different since they have different typing.

Commuting Conversions for Conn. The commuting con-

versions for rule Conn, reported in Fig. 7, correspond

to commuting the parallel operator with other terms.

For example, rule [Conn/Conn] is the standard associa-

tivity of parallel in the π-calculus. Also, [Conn/⊗ C/L]
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[Scope/Conn/L] (νy) (P |x Q) ≡ (νy)P |x Q
(
y 6∈ fn(Q )

)
[Scope/Conn/R] (νy) (P |x Q) ≡ P |x (νy)Q

(
y 6∈ fn(P )

)
[Scope/Scope] (νy) (νx)P ≡ (νx) (νy)P

[Scope/1L] (νx)wait[y];P ≡ wait[y]; (νx)P

[Scope/⊗ R/L], [Scope/( L/L] (νw)x(y); (P |Q) ≡ x(y); ((νw)P | Q)
(
w 6∈ fn(Q )

)
[Scope/⊗ R/R], [Scope/( L/R] (νw)x(y); (P |Q) ≡ x(y); (P | (νw)Q)

(
w 6∈ fn(P )

)
[Scope/⊗ L], [Scope/( R] (νw)x(y);P ≡ x(y); (νw)P

[Scope/⊕ R1], [Scope/&L1] (νw)x.inl;P ≡ x.inl; (νw)P

[Scope/⊕ R2], [Scope/&L2] (νw)x.inr;P ≡ x.inr; (νw)P

[Scope/⊕ L], [Scope/&R] (νw)x.case(P,Q) ≡ x.case((νw)P , (νw)Q)

[Scope/1C] (νw)
−→

close[x];P ≡
−→

close[x]; (νw)P

[Scope/⊗ C], [Scope/( C] (νw)
−→
x(y);P ≡

−→
x(y); (νw)P

[Scope/⊕ C1/L], [Scope/&C1/L] (νw)
−→
x.l (P,Q) ≡

−→
x.l ((νw)P,Q)

(
w 6∈ fn(Q )

)
[Scope/⊕ C1/L/R], [Scope/&C1/L/R] (νw)

−→
x.l (P,Q) ≡

−→
x.l ((νw)P, (νw)Q)

(
w ∈ fn(Q )

)
[Scope/⊕ C2/R], [Scope/&C2/R] (νw)

−→
x.r (P,Q) ≡ −→x.r (P, (νw)Q)

(
w 6∈ fn(P )

)
[Scope/⊕ C2/L/R], [Scope/&C2/L/R] (νw)

−→
x.r (P,Q) ≡ −→x.r ((νw)P, (νw)Q)

(
w ∈ fn(P )

)
Fig. 6 Commuting Conversions (≡) for Scope (Restriction).

says that
−→
x(y) in

−→
x(y);P |w Q can always be executed

before Q as far as x and y do not occur in Q . This

captures the concurrent behaviour of choreographies

in [10]. Note that some of the rules are not standard

for the π-calculus, e.g., [Conn/ ( R/R], but this does

not alter the intended semantics of parallel (cf. § 8, Se-

mantics).

Since conversions preserve the concluding judgement

of a proof, we have:

Theorem 1 (Subject Congruence) P .Ψ and P ≡
Q implies that Q . Ψ .

4.2 Reductions (→)

Similarly to structural equivalence, we derive the reduc-

tion semantics for LCC programs from proof transfor-

mations. Formally, the reduction relation → is defined

by the transformations reported in Fig. 8, closed up

to structural equivalence ≡. Reductions are standard

for both processes and choreographies (cf. [23,10]): pro-

cesses are reduced when they are the parallel compo-

sition of compatible actions, while choreographies can

always be reduced. The LCC proof transformations for

reductions are reported in [17, Appendix C]. Using a

slight abuse of notation, we label each reduction with

the channel it uses. Choreography reductions are also

annotated with •. We use t to range over labels of the

form x or •x. As for commuting conversions, reductions

preserve judgements:

Theorem 2 (Subject Reduction) P . Ψ and P
t−→

Q implies that Q . Ψ .

4.3 Scope Elimination (Normalisation)

We can use commuting conversions and reductions to

permute and reduce all applications of Scope in a proof

until the proof is Scope-free. Since applications of Scope
correspond to restrictions in LCC programs, the lat-

ter can always progress until all communications on re-

stricted channels are executed. We denote with P
t̃−→

Q a sequence of reductions P
t1−−→ . . .

tn−−→ Q , where

t̃ = t1, . . . , tn.

Theorem 3 (Termination/Deadlock-freedom) P .

Ψ implies there exist Q restriction-free and t̃ such that

P
t̃−→ Q and Q . Ψ .

Proof The proof follows the same intuition of that of

cut elimination in ILL. We proceed by induction on the

size of the proof for P . Ψ and the sizes of the types

in Ψ . If a reduction from Fig. 8 is applicable, then we

apply it. For all such reductions, we observe that the

size of the proof and/or the size of the types decreases

and therefore the thesis follows by induction hypothesis.

Otherwise, we can apply one of the structural equiva-

lences from Fig. 6. In this case, the proof gets smaller



10 Marco Carbone et al.

[Conn/Conn] (P |y Q) |x R ≡ P |y (Q |x R)

[Conn/1L/L] wait[x];P |y Q ≡ wait[x]; (P |y Q)

[Conn/1L/R] P |y wait[x];Q ≡ wait[x]; (P |y Q)

[Conn/⊗R/R/L], [Conn/(L/R/L] P |w x(y); (Q|R) ≡ x(y); ((P |w Q) | R)

[Conn/⊗R/R/R], [Conn/(L/R/R] P |w x(y); (Q|R) ≡ x(y); (Q | (P |w R))

[Conn/⊗ L/L] x(y);P |w Q ≡ x(y); (P |w Q)

[Conn/⊗ L/R], [Conn/( R/R] P |w x(y);Q ≡ x(y); (P |w Q)

[Conn/( L/L/R] x(y); (P |Q) |w R ≡ x(y); (P | (Q |w R))

[Conn/⊕ R1/R], [Conn/&L1/R] P |w x.inl;Q ≡ x.inl; (P |w Q)

[Conn/⊕ R2/R], [Conn/&L2/R] P |w x.inr;Q ≡ x.inr; (P |w Q)

[Conn/⊕ L/L] x.case(P,Q)|wR ≡ x.case((P |w R), (Q |w R))

[Conn/⊕ L/R], [Conn/&R/R] P |wx.case(Q,R) ≡ x.case((P |w Q), (P |w R))

[Conn/&L1/L] x.inl;P |w Q ≡ x.inl; (P |w Q)

[Conn/&L2/L] x.inr;P |w Q ≡ x.inr; (P |w Q)

[Conn/1C/L]
−→

close[x];P |w Q ≡
−→

close[x]; (P |w Q)

[Conn/1C/R] P |w
−→

close[x];Q ≡
−→

close[x]; (P |w Q)

[Conn/⊗ C/L], [Conn/(C/L]
−→
x(y);P |w Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(Q )

)
[Conn/⊗C/R], [Conn/(C/R] P |w

−→
x(y);Q ≡

−→
x(y); (P |w Q)

(
y 6∈ fn(P )

)
[Conn/⊕ C1/L]

−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R), (Q |w R))

(
w∈ fn(P )∩fn(Q )

)
[Conn/⊕ C1/R], [Conn/&C1/R] P |w

−→
x.l (Q,R) ≡

−→
x.l ((P |w Q), (P |w R))

(
w∈ fn(Q )∩fn(R )

)
[Conn/⊕C1/R/L],[Conn/&C1/R/L] P |w

−→
x.l (Q,R) ≡

−→
x.l ((P |w Q) , R)

(
w∈ fn(Q )\fn(R )

)
[Conn/⊕ C2/L]

−→
x.r (P,Q) |w R ≡ −→x.r ((P |w R), (Q |w R))

(
w∈ fn(P )∩fn(Q )

)
[Conn/⊕ C2/R], [Conn/&C2/R] P |w

−→
x.r (Q,R) ≡ −→x.r ((P |w Q), (P |w R))

(
w∈ fn(Q )∩fn(R )

)
[Conn/⊕C2/R/R],[Conn/&C2/R/L] P |w

−→
x.r (Q,R) ≡ −→x.r (Q , (P |w R))

(
w∈ fn(R )\fn(Q )

)
[Conn/&C1/L]

−→
x.l (P,Q) |w R ≡

−→
x.l ((P |w R), Q)

(
w∈ fn(P )\fn(Q )

)
[Conn/&C2/L]

−→
x.r (P,Q) |w R ≡ −→x.r (P , (Q |w R))

(
w∈ fn(Q )\fn(P )

)
Fig. 7 Commuting Conversions (≡) for Conn (Parallel Composition).

while the sizes of the types stay the same. Again, we

obtain the thesis by applying the induction hypothesis.

ut

5 Choreography Extraction and Endpoint

Projection

In LCC, a judgement containing connections can be

derived by either (i) using the action fragment, corre-

sponding to processes, or (ii) using the interaction frag-

ment, corresponding to choreographies. Let us consider

the two following proofs:

close[x] . · ` x :1
1R

close[y] . · ` y :1
1R

wait[x]; close[y] . x :1 ` y :1
1L

close[x] |x wait[x]; close[y] . · ` x :•1|x :•1 ` y :1
Conn

(νx) (close[x] |x wait[x]; close[y]) . · ` y :1
Scope

and

close[y] . · ` y :1
1R

−→
close[x] ; close[y] . · ` x :•1|x :•1 ` y :1

1C

(νx) (
−→

close[x] ; close[y]) . · ` y :1

Scope

The two proofs above reach the same hypersequent by

the respective methodologies (i) and (ii). In this sec-

tion, we formally relate the two methodologies, deriv-
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[β1] (νx) (close[x] |x wait[x];Q)
x−−→ Q

[β⊗] (νx) (x(y); (P |Q) |x x(y);R)
x−−→ (νy) (νx)

(
P |y (Q |x R)

)
[β(] (νx) (x(y);P |x x(y); (Q|R))

x−−→ (νx) (νy)
(
(Q |y P ) |x R)

[β⊕1
] (νx) (x.inl;P |x x.case(Q,R))

x−−→ (νx) (P |w Q)

[β⊕2
] (νx) (x.inr;P |x x.case(Q,R))

x−−→ (νx) (P |x R)

[β&1
] (νx) (x.case(P,Q) |x x.inl;R)

x−−→ (νx) (P |x R)

[β&2
] (νx) (x.case(P,Q) |x x.inr;R)

x−−→ (νx) (Q |x R)

[β1C] (νx)
−→

close[x];P
•x−−→ P

[β⊗C], [β(C] (νx)
−→
x(y);P

•x−−→ (νy) (νx)P

[β&C1
], [β⊕C1

] (νx)
−→
x.l (P,Q)

•x−−→ (νx)P

[β&C2
], [β⊕C2

] (νx)
−→
x.r (P,Q)

•x−−→ (νx)Q

Fig. 8 Reductions.

ing procedures of choreography extraction and endpoint

projection from proof equivalences.

As an example, consider the equivalence [αγ⊗] re-

ported in Fig. 9. The equivalence [αγ⊗] transforms a

proof of a connection of type A ⊗ B from the action

fragment into an equivalent proof in the interaction

fragment, and vice versa. We report the equivalences

for extraction and projection in Fig. 10, presenting their

proof terms. The full LCC proof transformations can be

found in [17, Appendix C]. We read these equivalences

from left to right for extraction, denoted by
x�→e, and

from right to left for projection, denoted by
x−�→p, where

x is the name of the connection used for the transfor-

mation. Note how a choreography term corresponds to

the parallel composition of two processes with the same

behaviour. It is also clear why the unselected process Q

in
−→
x.l(P,Q) is necessary for projecting the correspond-

ing case process. As for reductions (
x−→), we consider

the transformations
x�→e and

x−�→p closed up to struc-

tural equivalence ≡, and we denote sequences of their

applications respectively with x̃�→e and x̃−�→p.

In the remainder of this section, we proceed as fol-

lows. First, we use our equivalences to prove that rule

Conn and C-rules are admissible in a mutually exclu-

sive way. This means that proofs containing applica-

tions of Conn can always be transformed into logically-

equivalent proofs with applications of C-rules. Vice versa,

proofs containing applications of C-rules can always be

transformed into logically-equivalent proofs with appli-

cations of rule Conn. Second, we use our admissibility

results to derive procedures of choreography extraction

and endpoint projection for LCC programs. We finally

show that the extraction and the projection procedures

yield terms that are operationally equivalent according

to our semantics.

5.1 Admissibility of Conn

In the remainder, we say that a program is (par)-free if

it does not contain subterms of the form P |x Q . We

can now formally state our Theorem for the admissibil-

ity of Conn.

Theorem 4 (Conn Admissibility) Let P and Q be

(par)-free and such that:

P . Ψ1 | ∆1 ` x :A

Q . Ψ2 | ∆2, x :A ` T

Then, there exists a (par)-free R such that:

R . Ψ1 | Ψ2 | ∆1 ` x :•A | ∆2, x :•A ` T

Proof The proof follows the same intuition of that of

Cut admissibility in ILL. We proceed by mutual induc-

tion on (i) the respective sizes of the proof derivations

for the typings of P and Q , and (ii) the sizes of the

types in such proofs. If one of the equivalences in Fig. 10

can be applied, we apply it. The equivalence [αγ1] is the

base case. The other equivalences reduce the sizes of the

principal types. We then apply the induction hypoth-

esis. Otherwise, we use one of the commuting conver-

sions for rule Conn from Fig. 7 to push the application

of Conn up in the derivation. In all such cases, the sizes

of the proofs get smaller. We then apply the induction

hypothesis. ut

5.2 Admissibility of C-rules

We now state an auxiliary Lemma that will be useful

later on for reasoning about the admissibility of rules

that correspond to choreography terms. We remind the

reader that, by convention, we say that a proof term
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P . Ψ1 | ∆1 ` y :A Q . Ψ2 | ∆2 ` x :B

x(y); (P |Q) . Ψ1 | Ψ2 | ∆1,∆2 ` x :A⊗B
⊗R

R . Ψ3 | ∆3, y :A, x :B ` T
x(y);R . ∆3, x :A⊗B ` T

⊗L

x(y); (P |Q) |x x(y);R . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T
Conn

can be extracted to (denoted by
x�→e), can be projected from (denoted by

x
p←�−)

P . Ψ1 | ∆1 ` y :A

Q . Ψ2 | ∆2 ` x :B R . Ψ3 | ∆3, y :A, x :B ` T

Q |x R . Ψ2 | Ψ3 | ∆2 ` x :•B|∆3, y :A, x :•B ` T
Connx

P |y (Q |x R) . Ψ1 | Ψ2 | Ψ3 | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
Conny

−→
x(y);

(
P |y (Q |x R)) . Ψ1 | Ψ2 | Ψ3 | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T

⊗Cx

Fig. 9 A Proof Transformation, Extraction/Projection.

[αγ1] close[x] |x wait[x];P
x�→e
x

p←�−
−→

close[x];P

[αγ⊗] x(y); (P |Q) |x x(y);R
x�→e
x

p←�−
−→
x(y);

(
P |y (Q |x R))

[αγ(] x(y);P |x x(y); (Q|R)
x�→e
x

p←�−
−→
x(y);

(
(Q |y P ) |x R

)
[αγ&1

] x.case(P,Q) |x x.inl;R
x�→e
x

p←�−
−→
x.l ((P |x R), Q)

[αγ&2
] x.case(P,Q) |x x.inr;R

x�→e
x

p←�−
−→
x.r (P , Q |x R)

[αγ⊕1
] x.inl;P |x x.case(Q,R)

x�→e
x

p←�−
−→
x.l ((P |x Q) , R)

[αγ⊕2
] x.inr;P |x x.case(Q,R)

x�→e
x

p←�−
−→
x.r (Q , (P |x R))

Fig. 10 Extraction and Projection.

is a process term if it contains no choreographic sub-

terms, i.e., there are no applications of C-rules in its

type derivations. The Lemma below states that a par-

allel composition inside a process can always be brought

up to the top level preserving its typing.

Lemma 1 Let P be a process such that:

P . Ψ | ∆1 ` x :•A | ∆2, x :•A ` T

Then, there exist two processes Q1 and Q2 such that:

Q1 |x Q2 . Ψ | ∆1 ` x :•A | ∆2, x :•A ` T

Proof Since P is a process, we observe that the con-

nection on x must have been obtained by applying rule

Conn in the typing derivation of P . We proceed by

induction on the distance between this application of

Conn and the root of the typing derivation of P . The

base case corresponds to when the application of Conn
on x is already at the root. Otherwise, we use one of

the commuting conversions for rule Conn from Fig. 7

to push the application of Conn towards the root of

the typing derivation, therefore reducing the distance

to the root by one. Note that we can always apply one

of such commuting conversions: since P is a process,

its proof contains no applications of C-rules; hence, we

know that all the other rule applications beneath the

application of Conn do not manipulate the same chan-

nel x. We then apply the induction hypothesis. ut

Using Lemma 1, we can prove the admissibility of

all our C-rules, formally stated below.

Theorem 5 (C-rules Admissibility) Let P and Q

be processes (Q is used only in the additive cases).
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Then, there exists a process R such that:

(1C)

P . Ψ |∆ ` T
implies

R . Ψ |· ` x :•1|∆,x :•1 ` T

(⊗C)

P . Ψ | ∆1`y :•A | ∆2`x :•B | ∆3, y :•A, x :•B`T
implies

R . Ψ | ∆1, ∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T

((C)

P . Ψ |∆1 ` y :•A|∆2, y :•A ` x :•B|∆3, x :•B ` T
implies

R . Ψ |∆2 ` x :•A( B|∆1, ∆3, x :•A( B ` T

(&C1)

P . Ψ | Ψ ′ | ∆1 ` x :•A | ∆2, x :•A ` T and
Q . Ψ ′ | ∆1 ` x :B

implies

R . Ψ |Ψ ′|∆1 ` x :•A&B|∆2, x :•A&B ` T

(&C2)

P . Ψ | ∆1 ` x :A and

Q . Ψ | Ψ ′ | ∆1 ` x :•B | ∆2, x :•B ` T
implies

R . Ψ |Ψ ′|∆1 ` x :•A&B|∆2, x :•A&B ` T

(⊕C1)
P . Ψ | Ψ ′ | ∆1 ` x :•A | ∆2, x :•A ` T and

Q . Ψ ′ | ∆2, x :B ` T
implies

R . Ψ |Ψ ′|∆1 ` x :•A⊕B|∆2, x :•A⊕B ` T

(⊕C2)

P . Ψ | ∆2, x :A ` T and

Q . Ψ | Ψ ′ | ∆1 ` x :•B | ∆2, x :•B ` T
implies

R . Ψ | Ψ ′ | ∆1 ` x :•A⊕B | ∆2, x :•A⊕B ` T

Proof The first case, (1C), is obtained by applying rule

1L to P and then by applying Conn to the result and

the axiom 1R.

In the case for (⊗C), from Lemma 1, we know that

we can rewrite the proof derivation of P into an equiv-

alent proof where the application of the Conn rule on

y is at the root. Formally, for some Ψ1, Ψ2 such that

Ψ = Ψ1, Ψ2:

P1 .Ψ1|∆1`y :A P2 .Ψ2|∆2`x :•B|∆3, y :A, x :•B`T
P1 |yP2 .Ψ1, Ψ2|∆1`y :•A|∆2`x :•B|∆3, y :•A, x :•B`T

Above, we know that the connection on x must be on

the right premise, because both hypotheses for x and

y are in the same sequent ∆3, y : A, x : •B ` T . Now,

we apply again Lemma 1, in order to bring the appli-

cation of Conn on x to the root of the proof of the right

premise, obtaining the proof in Fig. 11(a). We can then

construct the proof reported in Fig. 11(b). We have thus

proven the thesis, for R = x(y); (P1|P3) |x x(y);P4 .

All the other cases follow by similar reasoning to

that for (⊗C). ut

5.3 The Correspondence Theorem

As in linear logic, where the result of cut admissibility

is used to define a procedure for eliminating cuts from a

proof, we can use our admissibility results for rule Conn
and C-rules to derive respective elimination procedures.

In terms of LCC programs, eliminating applications

of Conn corresponds to transforming programs contain-

ing subterms of the form P |x Q to programs contain-

ing only choreography terms.

Corollary 1 (Choreography Extraction) Let P .

Ψ . Then P x̃�→e Q for some x̃ and Q such that Q . Ψ

and Q does not contain subterms of the form R |x R′ .

Proof By interpreting the proof of Theorem 4 as an al-

gorithm. We start by transforming the inner-most ap-

plications of rule Conn, and then proceeding towards

the root of the proof until all applications of Conn are

eliminated. ut

Opposite to Corollary 1, we can define a procedure

for eliminating applications of C-rules, corresponding

to transforming choreography terms inside of an LCC

program into equivalent process terms.

Corollary 2 (Endpoint Projection) Let P .Ψ . Then,

P x̃−�→p Q for some x̃ and Q such that Q . Ψ and Q

does not contain choreography terms.

Proof Similar to the proof for Corollary 1, where we use

the proof for Theorem 5 instead of that for Theorem 4.

ut

Example 2 Using the equivalences in Fig. 10 and ≡,

we can transform the processes to the choreography in

Example 1 and vice versa. ut

We can now present the main property guaranteed

by LCC: the extraction and projection procedures pre-

serve the semantics of the transformed programs.

Theorem 6 (Correspondence) Let P . Ψ . Then:

(choreography extraction) P
x̃−→ P ′ implies P x̃�→e Q

such that Q
•x̃−−→ P ′ .

(endpoint projection) P
•x̃−−→ P ′ implies P x̃−�→pQ such

that Q
x̃−→ P ′ .
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(a)

P1 . Ψ1|∆1 ` y :A

P3 . Ψ3|∆2 ` x :B P4 . Ψ4|∆3, y :A, x :B ` T
P3 |x P4 . Ψ3, Ψ4|∆2 ` x :•B | ∆3, y :A, x :•B ` T

Conn

P1 |y (P3 |x P4) . Ψ1, Ψ3, Ψ4 | ∆1 ` y :•A | ∆2 ` x :•B | ∆3, y :•A, x :•B ` T
Conn

(b)

P1 . Ψ1|∆1 ` y :A P3 . Ψ3|∆2 ` x :B

x(y); (P1|P3) . Ψ1|Ψ3|∆1,∆2 ` x :A⊗B
⊗R

P4 . ∆3, y :A, x :B ` T
x(y);P4 . ∆3, x :A⊗B ` T

⊗L

x(y); (P1|P3) |x x(y);P4 . Ψ1, Ψ3, Ψ4 | ∆1,∆2 ` x :•A⊗B | ∆3, x :•A⊗B ` T
Conn

Fig. 11 Elements of the Proof of Theorem 5.

Proof For simplicity, we omit proof terms and focus

directly on pure logic proofs, ranged over by D, E , F ,

. . . .

We proceed by proving the following property:

Let x̃ = x1, . . . , xn and ỹ = xn, . . . , x1. Then,

1. D x̃−→ F for some F implies that D x̃�→e E for some

E such that E •x̃−−→ F .

2. D •x̃−−→ F for some F implies that D ỹ−�→p E for some

E such that E x̃−→ F .

We show the proof for (1); the proof for (2) is similar.

We can depict point (1) with the following diagram:

D F

E
e
x̃

x̃

•x̃

The proof proceeds now by induction on the length of x̃.

In the sequel, ≡yc,s is an abbreviation for ≡yc≡ys , where

≡yc and ≡ys are, respectively, the commuting conversions

for Conn and Scope applied to the connection y.

Case x̃ is empty. The thesis holds for D = E = F .

Case x̃ = y, z̃. In this case we know that D ≡yc,s
y−→ D′.

Our induction hypothesis is then that there exist E ′ and

F such that:

D′ F

E ′
e
z̃

z̃

•z̃

We construct the thesis from the induction hypothesis

by proving that the following diagram commutes:

e

e

e

D
≡yc
≡yc,s D′ F

E ′E ′′

E ≡ys

≡ys

y

y

•y z̃

z̃

z̃

•z̃

•y

We can split the diagram in two parts. The first part is

the upper-left triangle that instantiates every arrow to

its one-time application:

D
≡yc
≡yc,s D′

E ′′ ≡ys
e

y

y

•y

This diagram commutes because, from the definitions

of ≡ and →, we can derive:

≡yc≡ys
y−→ = ≡yc

y�→e≡ys
•y−−→

The equation above holds because the shapes of the

proofs required by
y−→ are the same as those required by

y�→e, with the only difference being that
y−→ also requires

an application of rule Scope on y at the end. Therefore,

before commuting such Scope application using ≡ys , we

can immediately apply
y�→e and apply ≡ys afterwards,

obtaining one of the required shapes for applying
•y−−→;

this is easily verified by case analysis on the definitions

of ≡ and →.

Let us now consider the second part of the diagram.

We need to prove that the following part commutes, for

y 6∈ z̃:

D′

E ′E ′′

E ≡ys

≡ys

e

e

•y z̃

z̃
•y

We observe that this diagram can be obtained by it-

eratively applying the following, for some v and some

proofs G and H:
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D′

≡vc

HE ′′

G ≡ys

≡ys
≡vc
e

e

•y
v

v
•y

This diagram commutes because we can derive the equal-

ity (where the left-hand side is what we know from our

induction hypothesis):

≡ys
•y−−→≡vc

v�→e = ≡vc
v�→e≡ys

•y−−→

The equation above holds because commuting conver-

sions on different channels can always be applied one

after the other or vice versa. ut

6 Relation to Intuitionistic Linear Logic

In this section, we discuss the relationship between the

proof theory of LCC and standard (multiplicative-additive)

ILL. We recall, from § 3.1, Hypersequents, that the hy-

potheses of a hypersequent Ψ are the non-bulleted hy-

potheses that appear in the sequents inside of Ψ , and

that the conclusion T of Ψ is the only non-bulleted con-

clusion that appears in Ψ (a valid hypersequent always

has exactly one non-bulleted conclusion). At the end of

this section, we will prove that if a judgement P . Ψ

with hypotheses ∆1, . . . ,∆n and conclusion T is valid

in LCC, then the judgement Q . ∆1, . . . ,∆n ` T is

valid in ILL for some Q .

The rules defining the proof theory of ILL are re-

ported in Fig. 12, where for presentational convenience

we use the same proof terms and variable assignments

as for LCC. These terms correspond to the ones origi-

nally presented in [7,26]. The rules defining ILL are very

similar to a subset of those forming the action fragment

of LCC. There are two overall differences: all judge-

ments contain only one sequent, and rule Cut, which is

not present in LCC, is added. It is immediate to see

that ILL is a restriction of the action fragment of LCC

(Fig. 2) to singleton hypersequents. For rule Cut, even

though it is not present in LCC we can derive a more

general rule by combining rules Conn and Scope:

Proposition 1 (Derivability of Cut in LCC) The

following rule is derivable in LCC:

P . Ψ1 | ∆1 ` x :A Q . Ψ2 | ∆2, x :A ` T

(νx) (P |x Q) . Ψ1 | Ψ2 | ∆1,∆2 ` T
Cut

Proof We construct a closed-form proof of the conclu-

sion of Cut starting from its premises:

P . Ψ1 | ∆1 ` x :A Q . Ψ2 | ∆2, x :A ` T

P |x Q . Ψ1 | Ψ2 | ∆1 ` x :•A | ∆2, x :•A ` T
Conn

(νx) (P |x Q) . Ψ1 | Ψ2 | ∆1,∆2 ` T
Scope

ut

Using Proposition 1 we can prove the following The-

orem, which states that all judgements in ILL can be

derived also in LCC.

Theorem 7 (From ILL to LCC) If P . ∆ ` T is a

valid judgement in ILL, then it is also a valid judgement

in LCC.

Proof We proceed by induction on the structure of the

ILL proof for P .∆ ` T . For each rule that is not Cut in

the ILL proof, we simply apply the corresponding rule

in the action fragment of LCC. For rule Cut, we apply

the construction from Proposition 1. ut

We can also prove the opposite, namely that given

any LCC proof for a judgement with a singleton hyper-

sequent. We construct a corresponding ILL proof by

using endpoint projection.

Lemma 2 (From LCC singletons to ILL) If P .

∆ ` T is a derivable judgement in LCC, then there

exists a process Q such that Q . ∆ ` T is a derivable

judgement in ILL.

Proof By the assumption, Corollary 2 and Theorem 3

we know that there exist x̃, t̃, and Q such that:

P x̃−�→p

t̃−→ Q and Q . ∆ ` T

ut

As ILL judgements are special cases of LCC judge-

ments where hypersequents are singletons, those LCC

judgements in which hypersequents contain more than

one sequent cannot be derived in ILL. Nevertheless,

we can define a procedure that transforms LCC into

ILL proofs by erasing connection related information.

Intuitively, we apply rule Scope until all connections

are hidden, collapsing our hypersequent of interest and

leaving us with its hypotheses and conclusion in a single

sequent. We first prove the following auxiliary Lemma.

Below, (νx̃) is a shortcut for (νx1) . . . (νxn) .

Lemma 3 Let P . Ψ . Then, there exists x̃ such that

(νx̃)P . ∆ ` T , where ∆ is the union of all the hy-

potheses of Ψ and T its conclusion.
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P . ∆1 ` y :A Q . ∆2 ` x :B

x(y); (P |Q) . ∆1, ∆2 ` x :A⊗ B
⊗R

P . ∆, y :A, x :B ` T

x(y);P . ∆, x :A⊗ B ` T
⊗L

P . ∆, y :A ` x :B

x(y);P . ∆ ` x :A ( B
( R

P . ∆1 ` y :A Q . ∆2, x :B ` T

x(y); (P |Q) . ∆1, ∆2, x :A ( B ` T
( L

close[x] . · ` x :1
1R

P . ∆, x :A ` T
x.inl;P . ∆, x :A&B ` T

&L1

Q . ∆, x :B ` T

x.inr;Q . ∆, x :A&B ` T
&L2

P . ∆ ` T
wait[x];P . ∆, x :1 ` T

1L
P . ∆ ` x :A

x.inl;P . ∆ ` x :A⊕ B
⊕R1

Q . ∆ ` x :B

x.inr;Q . ∆ ` x :A⊕ B
⊕R2

P . ∆ ` x :A Q . ∆ ` x :B

x.case(P,Q) . ∆ ` x :A&B
&R

P . ∆, x :A ` T Q . ∆, x :B ` T

x.case(P,Q) . ∆, x :A⊕ B ` T
⊕L

P . ∆1 ` x :A Q . ∆2, x :A ` T

(νx) (P |x Q) . ∆1, ∆2 ` T
Cut

Fig. 12 Multiplicative-additive Intuitionistic Linear Logic.

Proof We derive (νx̃)P .∆ ` T by applying rule Scope
for each connection in Ψ , obtaining by construction that

∆ is the union of all the hypotheses of Ψ and T its

conclusion. ut

By combining Lemma 2 with Lemma 3, we can finally

show how to reconduce a general LCC proof to ILL.

Theorem 8 (From LCC to ILL) Let P . Ψ . Then,

there exists Q such that Q .∆ ` T is a valid judgement

in ILL, where ∆ is the union of all the hypotheses of Ψ

and T its conclusion.

Proof We first apply the construction from Lemma 3

to obtain (νx̃)P . ∆ ` T . Then, the thesis follows by

applying Lemma 2. ut

7 Related Work

Linear Logic. Linear logic was first described by Gi-

rard as a logic of resources [12]. The connection be-

tween linear logic and processes was first formally ex-

plored by Bellin and Scott [5]. However, it was not un-

til much later that Caires and Pfenning discovered a

Curry-Howard correspondence based on session types [7].

In parallel to the work on linear logic, Pottinger [20] and

Avron [2] independently discovered and studied hyper-

sequents, i.e., generalisations of ordinary sequent sys-

tems operating with sets of sequents instead of single

sequents. This generalisation increases the expressive

power of the sequent calculus by allowing additional

transfer of information among sequents. This is pre-

cisely what we exploit in our proof theory for typing

choreographies, where we use hypersequents to capture

the structure of a system of processes and their connec-

tions.

Our action fragment is inspired by π-DILL [7]. The

key difference is that we split rule Cut into rules Conn
and Scope, which allows us to (i) reason about chore-

ographies and (ii) type processes where restriction and

parallel are used separately. LCC and ILL are essen-

tially equivalent in terms of what conclusions can be

derived from a set of hypotheses (§ 6). The hallmark

characteristic of LCC is thus the ability to type chore-

ographies and to yield the transformations of extraction

and projection. In Classical Processes [26], processes

correspond to proofs in classical linear logic, following

the line of [7]. We conjecture that LCC can be adapted

to the classical setting. Both works [7] and [?] can type

shared channels that can be used multiple times using

exponentials from linear logic. We discuss how LCC

could be extended in a similar direction in § 8.

Choreographies. Compositional Choreographies [18] is

a language model where choreographies can be mixed

with processes to achieve compositionality. The proof

theory of LCC can be seen as a foundational model for

compositional choreographies, logically reconstructed us-

ing linear logic. As a consequence, our work yields an

extraction procedure and normalisation results that are

not provided in [18]. Our commuting conversions can

be seen as a logical characterisation of swapping [10],

which permutes independent communications in a chore-

ography. For example, using the rules in Fig. 7, we can

derive the following equivalences.

−→
x(y); (P |u

−→
z(w);Q) ≡ (

−→
x(y);P ) |u (

−→
z(w);Q)

(
−→
x(y);P ) |u (

−→
z(w);Q) ≡

−→
z(w); (

−→
x(y);P |u Q)

Previous works [14,9,10,18] have formally addressed

choreographies and EPP but without providing chore-
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ography extraction. Choreography extraction is a known

hard problem [3,16,11], and our work is the first to

address it for a language supporting channel passing.

Probably, the work closest to ours with respect to ex-

traction is the model in [15], where global types are

extracted from session types; choreographies are more

expressive than global types, since they capture the in-

terleaving of different sessions. In the future, we plan to

address standard features supported by other choreog-

raphy calculi, such as multiparty sessions, asynchrony,

replicated services, and nondeterminism [9,10,18].

Our mixing of choreographies with processes is sim-

ilar to that developed for conversation types [8] and

choreography programs [18]. Conversation types deal

with the simpler setting of protocols, whereas we handle

programs supporting name passing and session inter-

leaving, both nontrivial problems [6,10,18]. The type

system of compositional choreographies [18] does not

keep information on where the endpoints of connections

are actually located as in our hypersequents, which en-

ables choreography extraction in our setting.

8 Discussion

We discuss some aspects of this work and some future

extensions.

Process identifiers. In typical choreography calculi, chore-

ography terms identify the processes involved in a com-

munication explicitly using the “Alice and Bob” nota-

tion from security protocols [14,9,10,18]. To illustrate

the difference, a communication of a fresh name y over

a channel x would be typically written as p -> q : x(y),

where p and q are process identifiers representing re-

spectively the sender and the receiver for the communi-

cation. In LCC, process identifiers are implicit: for each

communication
−→
x(y) , there are a sender and a receiver

that can be automatically inferred from the connections

inside of the hypersequent used for typing the commu-

nication. Indeed, the separation between the sender and

the receiver processes of each communication becomes

evident when applying our projection procedure. Omit-

ting process identifiers is thus just a matter of presen-

tational convenience: a way of retaining them would be

to annotate each sequent in a hypersequent with a pro-

cess identifier (cf. [17]). For example, the rule ⊗C could

be rewritten as follows.

P . Ψ | ∆1 `r y :•A | ∆2 `p x :•B | ∆3, y :•A, x :•B `q T

p -> q : x(r :y);P . Ψ
| ∆1,∆2 `p x :•A⊗B
| ∆3, x :•A⊗B `q T

In such new rule, we read the term p -> q : x(r :y);P

as “process p sends channel y to process q over channel

x and starts the new process r; the system then pro-

ceeds as P ”. The notation r :y indicates that process

p transfers its ownership of the fresh channel y to the

newly created process r, as checked by the rule.

Exponentials. Previous work has shown that the expo-

nential fragment of linear logic can be used to type

processes that offer reusable (non-linear) channels [5,7,

26]. We conjecture that our development of LCC can

be extended by following a similar direction. For ex-

ample, consider the cut rule for exponentials found in

π-DILL [7] (reformulated in our syntax for sequents):

P . Γ ; · ` y :A Q . Γ, u :A;∆ ` T

(νu) (!u(y);P | Q) . Γ ;∆ ` T
Cut!

In order to capture exponentials in choreographies, the

key aspect will be to understand how the Cut! rule

above can be properly split into connection and scope

rules, as done for the standard Cut rule in this paper.

We leave an exploration of this aspect to future work.

Semantics. Due to the commuting conversions supported

by LCC, our proof theory includes more term equiv-

alences than those defined in the standard π-calculus.

For example, the equivalence [Conn /( L/L/R] in Fig. 7

allows to move a parallel process under a prefix. This

kind of commuting conversions arise naturally from the

correspondence with linear logic [26]. However, the ex-

tra equivalences do not produce any new reductions in

well-typed systems, and are therefore redundant [19].

Multiparty Sessions. Another interesting extension to

our work would be to generalise the proof theory of

LCC to multiparty sessions, i.e., sessions with more

than two participants. This would be in line with the de-

velopment of compositional choreographies [18], where

the added benefit of using LCC would be to obtain an

extraction procedure in a multiparty context. We con-

jecture that the first step to achieve this goal would

be to generalise our Conn and Scope rules to multi-

party versions where multiple connections are respec-

tively formed and scoped.
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