
JOLIE: a Java Orchestration Language

Interpreter Engine

Fabrizio Montesi1, Claudio Guidi2, Roberto Lucchi2

Gianluigi Zavattaro2

1Corso di Scienze dell’Informazione di Cesena, University of Bologna, Italy
2Department of Computer Science, University of Bologna, Italy

Abstract

Service oriented computing is an emerging paradigm for programming distributed applications based on
services. Services are simple software elements that supply their functionalities by exhibiting their interfaces
and that can be invoked by exploiting simple communication primitives. The emerging mechanism exploited
in service oriented computing for composing services –in order to provide more complex functionalities– is
by means of orchestrators. An orchestrator is able to invoke and coordinate other services by exploiting
typical workflow patterns such as parallel composition, sequencing and choices. Examples of orchestration
languages are XLANG [5] and WS-BPEL [7]. In this paper we present JOLIE, an interpreter and engine
for orchestration programs. The main novelties of JOLIE are that it provides an easy to use development
environment (because it supports a more programmer friendly C/Java-like syntax instead of an XML-based
syntax) and it is based on a solid mathematical underlying model (developed in previous works of the
authors [2,3,4]).

Keywords: SOA, coordination, orchestration, Java, service, engine

1 Introduction

Service oriented computing is an emerging paradigm for programming distributed

applications based on services. Services are simple software elements that supply

their functionalities by exhibiting their interfaces and that can be invoked by exploit-

ing simple communication primitives, the so-called One-Way and Request-Response

ones. Services can be composed each other in order to design more complex services

by exploiting orchestrators. The orchestrators, indeed, are able to invoke and coor-

dinate other services by exploiting typical workflow patterns such as parallel com-

position, sequencing and choices. Furthermore, composition can be also achieved

� Research partially funded by EU Integrated Project Sensoria, contract n. 016004.
1 Email: famontesi@gmail.com
2 Email: cguidi@cs.unibo.it, lucchi@cs.unibo.it, zavattar@cs.unibo.it

Electronic Notes in Theoretical Computer Science 181 (2007) 19–33

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2007.01.051

http://www.elsevier.com/locate/entcs

by following a different approach, that is choreography, that allows to design a dis-

tributed system in a top view manner [2,8]. The most credited technology that

deals with service oriented computing is Web Services which aims at guaranteeing

interoperability among different platforms and whose specifications are defined by

means of the XML language. One of the most important specification is WSDL [10]

that defines a language for designing a Web Service interface. An interface allows to

access service functionalities by means of operations. An operation represents the

basic interaction modality of a service and it can be a One-Way operation, where

an invoking message is sent to the service, or a Request-Response one, where an

invoking message is sent to the service assuming that a response message will be

subsequently sent back from it. Web Services can be composed following both or-

chestration and choreography approaches. As far as orchestration is concerned here

we cite WS-BPEL [7], as far as choreography is concerned we cite WS-CDL [9].

In our previous works [2,3,4] we have analyzed orchestration and choreography

as synergic approaches for distributed system design by following a formal approach.

Our formal investigation aims at supplying a precise formal framework on which we

can develop designing tools for service oriented computing systems where orches-

tration and choreography languages play a fundamental role. In particular, we have

formalized both choreography and orchestration languages by means of two process

calculi and we have presented a formal notion of conformance between them based

on bisimulation. As it emerges by those works the orchestration represents w.r.t.

choreography a refinement step towards the implementation of service oriented ap-

plications. Informally, if on the one hand choreography does not produce executable

systems, on the other hand the orchestration makes it possible to program each ser-

vice involved in the application. For the sake of brevity, we do not report the formal

definition of the syntax and semantics of our orchestration language (for a closer

look to the language we remind to the previous works). We simply report a small

example in order to give the flavour of the kind of calculus we have developed. As-

sume a buyer service requests for the price of a particular kind of good to a seller

service by sending a message on a Request-Response operation. Then, it invokes a

purchase order by sending a message on a One-Way operation. We can model such

a service dialog as follows:

Buyer ::= [good := apple; price@S(good, price); ...; apple@S(250),SB]B

Seller ::= [price(good, eur, good = apple?eur := 100) | apple(n); ...,SS]S

The buyer is a service located at site B where the good variable is initialized to

the value apple. price@S(good, price) means that the buyer invokes the Request-

Response operation price at the service located at site S sending the variable good

and storing the response into the variable price. Then, the buyer performs some

internal computation (that we do not specify for the sake of brevity). Finally, it

performs apple@S(250) that represents the invocation of the One-Way operation

apple to the service located at S in order to initiate a purchase order of 250 apples.

The ; is a sequential composition operator which means that all the statements must

be executed one after the previous one has completed. The seller is a service located

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3320

at S which receives a price request on the Request-Response operation price; the

good for which the price is requested is stored into the variable good. The response

to be sent back is taken from the variable eur, but before sending the response

message the seller verifies if the received good corresponds to apple, and in this

case it assign the value 100 to the variable eur. The operation apple works in

parallel (exploiting the operator |) and waits for an apple purchase order. We leave

unspecified the behaviour of the seller after the reception of the purchase order. The

terms SB and SS represent the internal states of the sites B and S, respectively. A

site state is a function that associates to the site variables the corresponding state.

In this paper we focus on orchestration, presenting JOLIE (Java Orchestration

Language Interpreter Engine) which we have developed in order to animate orches-

tration programs written in a language based on the formal orchestration process

calculus. The syntax of the JOLIE language is C/Java-like in order to provide a

more programmer friendly development environment. Indeed, the typical orches-

tration languages such as XLANG [5] and WS-BPEL [7] have a less human readable

XML-based syntax. The above seller service can be rewritten in the JOLIE language

as follows: 3

define priceCalc {
if (good == "apple") {

eur = 100
}

}

main {
price< good >< eur >(call(priceCalc)) || apple<n> ;; ...

}

where good, eur and n are variables, price is a Request-Response operation and

apple a One-Way operation. priceCalc is a subroutine (similar to C procedures)

which can be called by using the statement call(priceCalc).

The peculiar and original characteristic of JOLIE is that it combines a solid

mathematical basis provided by the orchestration process calculus discussed above

with a programmer friendly development and execution environment based on a

C/Java-like (instead of a XML-based) syntax. This contrasts with most of the actual

Web Services orchestration languages for which the formal operational semantics has

been investigated and (partially) defined after the syntax. This contrasts also with

the trend of developments of WS-BPEL for which, only after the definition of the

orchestration language, an extension that includes the possibility to exploit and

invoke Java programs is currently under development (see e.g. BPELJ [6]).

Moreover, JOLIE is a fundamental step in our research in orchestration and

choreography languages because it permits us to experimentally verify whether the

theoretical approach taken during the design of the process calculi are actually sat-

isfactory also when the orchestration programs are to be actually run and executed.

For instance, we had to add some additional constructs to JOLIE which where not

included in the corresponding process calculus. In particular, JOLIE implements

also an iterative statement while and a timing statement sleep(msec) for pro-

gramming processes that wait for a certain amount of milliseconds. The latter is

3 For the sake of brevity we present only a fragment of the entire code.

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 21

particularly useful to program orchestrators which are not willing to wait indefi-

nitely for a service response that will never arrive due to either a communication

or a service fault. It is also worth to underline that JOLIE has been developed by

strongly exploiting the encapsulation principle and in a modular way which allows

us to be protocol and communication medium independent. Namely, it is simple

to extend the engine in order to run orchestrators that exploit different and het-

erogeneous communication medium such as SOAP, Internet sockets, shared files,

etc.

The paper is structured as follows: in Section 2 we present the JOLIE language

whereas in Section 3 we show the interpreter internals. In Section 4 we present a

case study taken from [7] by using JOLIE and in Section 5 we report conclusions

and future works.

2 JOLIE language overview

JOLIE provides a C-like syntax for designing orchestrator services. A C-like syntax

makes the language intuitive and easy to learn for a programmer customed to it.

In the following we introduce some basics of the JOLIE language, except expression

and condition syntaxes which are similar to that of C language.

2.1 Identifiers

An identifier (often abbreviated to id) is an unambiguous name stored in the or-

chestrator shared memory which identifies a location, an operation, a variable or a

link. An identifier must match the following regular expression:

[a-zA-Z]([0-9a-zA-Z])*

Some JOLIE statements require that the programmer provides a list of identifiers,

which is formed by identifiers separated by commas (as ”identifier1, identifier2, a,

b, c”). In the following, we refer to the list of identifiers by using the name id list.

2.2 Program structure

A JOLIE program structure is represented by the following grammar:

program::=

locations { Locations-definition∗ }

operations { Operations-declaration∗ }

variables { Variables-declaration }

links { Links-declaration }

definition∗

main { Process }

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3322

definition∗

definition:= define id { Process }

where we represent non-terminal symbols in italic and the Kleene star represents a

zero or more times repetition. For the sake of clarity the non-terminals Locations-

definition, Operations-declaration, Variables-declaration, Links-declaration and Pro-

cess are separately explained in the following.

2.2.1 Locations

JOLIE communications are socket based: an orchestrator waits for messages on

a network port (the default is 2555 4). In order to communicate with another

orchestrator it is fundamental to know its hostname (or ip address) and the port it

is listening to: these information are stored in a location. A location definition joins

an identifier to a hostname and a port. The non-terminal follows:

Locations-definition:= id=“hostname:port”

where we do not define the hostname and the port non-terminals which must be

intended as a representation of any hostname and any port respectively. In the

following we do not define the auto explicative non-terminals which will be rep-

resented by using italic characters. In the following we present program fragment

which shows a possible location declaration:

locations {
localUri = "localhost:2555",
googleUri = "www.google.com:80",
ipUri = "192.168.0.1:2556"

}

2.2.2 Operations

The operations represent the way a JOLIE orchestrator exploits for interacting with

other orchestrators. We distinguish two types of operations:

• Input operations.

• Output operations.

The former represent the access points an orchestrator offers to communicate with

it, whereas the latter are used to invoke input operations of another orchestrator.

We distinguish two groups of input operations: One-Way and Request-Response. A

One-Way operation simply waits for a message, while a Request-Response operation

waits for a message, executes a code block and then sends a response message to

the invoker. As far as output operations are concerned they can be a Notification

or a Solicit-Response operation. The former is used to invoke a One-Way operation

of another orchestrator, sending a message to it, while the latter is used to invoke a

Request-Response operation. It is worth noting that a Solicit-Response operation,

after sending the request message, is blocked until it receives the response one from

the invoked service. The non-terminal follows:

4 the default port can be overridden by command line

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 23

Operations-declaration:= OneWay:id list

| RequestResponse:id list

| Notification:id-assign list

| SolicitResponse:id-assign list

id-assign:= id=id

By definition, input operations expect a list of identifiers, while the output ones

expect a list of pairs id=id (we have identified such a list by using the notation

id-assign list). As far as the output operations are concerned we distinguish be-

tween the operation name used within the orchestrator and the bound operation

name of the invoked one. In a pair idA=idB, idA represents the internal operation

name whereas idB the bound name of the external one to be invoked. Such a lan-

guage characteristic allows us to decouple the orchestrator code from the external

operation name binding. In the following a program fragment shows an example of

operation declaration.
operations
{
OneWay:

ow1
RequestResponse:

rr1, rr2
Notification:

n1 = serverOneWay1, n2 = serverOneWay2, n3 = serverOneWay3
SolicitResponse:

sr1 = serverRequestResponse1
}

2.2.3 Variables

JOLIE variables are typeless. Implicit supported types are integers and strings. The

variables declaration non-terminal requires only a list of identifiers which represent

the shared memory variables. The definition follows:

Variables-declaration:= id list

2.2.4 Links

Links are used for internal parallel processes synchronization. As for variables the

links declaration non-terminal requires only a list of identifiers where the ids will

represent internal links used for synchronization purposes.

Links-declaration:= id list

2.2.5 Definitions

Definitions allows to define a procedure which will be callable by another one by

exploiting the call statement. Each definition joins an identifier to a Process. Syn-

tactically, a Process is a piece of code composed by JOLIE statements. Informally,

the process defined within a definition can be viewed as the body of a C function.

2.2.6 Main

The main block allows to define the process which will be run at the start of the

program execution. Informally, it is comparable to the main function of a C pro-

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3324

gram.

2.3 Statements

This paragraph shows a brief survey of JOLIE statements.

2.3.1 Program control flow statements
• call(id) : calls and executes the procedure which has been defined with the

given identifier.

• if (condition) {...} else if (condition) {...} else {...}: condition

statement

• while(condition) {...}: loop statement

2.3.2 Operation statements
• id<id list> : waits for a message for the OneWay operation declared in the

operations block as id, and stores its values in the id list variables.

• id<id list> <id list> (Process) : waits for a message for the RequestResponse

operation id, stores its values in the first id list variables, executes the code block

Process and sends a response message containing the values of the second id list

variables.

• id@id<id list> : uses the Notification operation represented by the first id to send

a message which contains the values of the id list variables, to the orchestrator

located at the second id. The second id can be a location declared in the locations

block, or a variable containing a string that can be evaluated as a location. It is

worth noting that such a feature allows to implement the location mobility. It

is possible, indeed, to receive a location which can be exploited for performing a

Notification or a Solicit-Response.

• id@id<id list> <id list> : uses the SolicitResponse operation represented by the

first id to send a message which contains the values of the first id list variables, to

the orchestrator located by the second id (which can be, as for the Notification, a

location or a variable). Once the message is sent, it waits for a response message

from the invoked Request-Response and stores its values in the second id list

variables.

2.3.3 Synchronizing statements
• linkIn(id) : linkIn and linkOut are used for parallel processes synchronization

and must be always considered together. In particular the linkIn waits for a

linkOut trigger on the same internal link identified by id. In case there are

already one or more linkOut processes triggering for the same internal link, it

synchronizes itself with one of them by following a non-deterministic policy.

• linkOut(id) : triggers for a linkIn synchronization on the same internal link

identified by id. In case there are already one or more linkIn processes waiting

for the same internal link, it synchronizes itself with one of them by following a

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 25

non-deterministic policy.

2.3.4 Console input/output statements
• in(variable id) : waits for a console user input and stores it in the given variable.

• out(expression) : writes the evaluation of the given expression on the console

(note that a variable can be considered as an expression).

2.3.5 Others
• sleep(n) : makes the current process sleeping for n milliseconds where n is a

natural.

• nullProcess : no-op statement. 5

2.4 Statement composers

JOLIE provides three ways to compose statements: sequence, parallelism and non-

deterministic choice.

2.4.1 Sequence

Sequences are composed by exploiting the ;; operator. Let x1, x2, . . . , xn−1, xn be

statements. Then, the sequential composition

x1; ;x2; ; . . . ; ;xn−1; ;xn

executes x1 and waits for it to terminate, then executes x2 and waits for it to

terminate and continues with this behaviour until it reaches the end of the sequence.

2.4.2 Parallel

Parallel processes are composed by exploiting the ‖ operator. The ‖ operator

combines sequences (note a single statement is a sequence of one element). Let

s1, s2, . . . , sn−1, sn be sequences. Then, the parallel composition

s1‖s2‖ . . . ‖sn−1‖sn

executes every sequence in parallel. A parallel composition is terminated when all

the sequences are terminated.

2.4.3 Non-deterministic choice

A non-deterministic choice can be expressed among different guarded branches by

using the ++ operator. A branch guard can only be an input operation or a linkIn

statement, whereas the branch can be any process. Let

(g1, p1), (g2, p2), . . . , (gn−1, pn−1), (gn, pn)

5 the nullProcess statement is usually exploited within the RequestResponse when there is no need to
execute anything before sending the response.

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3326

be branches where g is the branch guard and p the guarded process. The syntax of

the non-deterministic choice follows:

[g1]p1++[g2]p2++...++[gn−1]pn−1++[gn]pn

The guards are defined within square brackets. When a non-deterministic choice

is programmed it makes the interpreter waiting for an input on one of its guards.

Once an input has come, the related p process is executed and the other branches

are deactivated.

2.4.4 Priority of the composers

The statement composers interpretation priority is: ;; ‖ ++. In the following

example, where A, B, C and D are statements, we show how priority works.

[req1<a>] A || B ;; C ++ [req2] D ;; C ;; B || D

In this code fragment there is a non-deterministic choice between two branches
guarded by two One-Way operations (req1<a> and req2). By considering the
operator priority the same code would be explicited as follows.

[input1](A || (B ;; C)) ++ [input2] ((D ;; C ;; B) || D)

2.5 Example

As a practical example, consider a scenario in which we have an orchestrator which

acts as a service provider. The orchestrator declares a Request-Response operation,

named factorialRR, which has the purpose to receive a number and, as a response,

to send its factorial. Moreover, the orchestrator has to interact with a logging server

in order to communicate its activity for constructing a statistic of its usage. The

following code snippet shows a possible implementation. For the sake of brevity,

only the main procedure is shown.
main
{

while(1) {
[factorialRR< n >< result >(call(calcFactorial))]

servedClients = servedClients + 1
++
[linkIn(logLink)]

notifyActivity@logServerUri< servedClients >;;
servedClients = 0

}
||
while(1) {

sleep(60000);; /* 60 seconds */
linkOut(logLink)

}
}

The main process is composed by two processes in parallel. The former defines

a non-deterministic choice between the Request-Response on which the service can

be accessed for returning the factorial calculation and the linkIn process defined

on the internal link logLink. The linkOut process which triggers the internal link

logLink is defined in the second parallel process which, every 60 seconds, interrupts

the service for sending the number of the served clients to the logging service located

at logServerUri.

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 27

Fig. 1. JOLIE architecture

3 JOLIE interpreter architecture

This section is devoted to describe the architecture of JOLIE.

3.1 Structure overview

Figure 1 describes the JOLIE interpretation algorithm and the parts composing the

interpreter. In order to explain how JOLIE works we proceed by describing the main

steps of the run-time environment and then its main components: the Parser, the

Object Oriented interpretation tree and then the Communication core.

Algorithm 1 JOLIE interpreter behavior

Step 1: initialize the communication core.

Step 2: create an instance of the parser.

Step 3: create the Object Oriented Interpretation Tree (OOIT).

Step 4: invoke the run() method of the OOIT’s root node (that corresponds to the

main).

We will now examine the various parts composing the interpreter.

3.2 Parser and Object Oriented Interpretation Tree

JOLIE is based on an object oriented infrastructure created during the parsing of

the orchestration to be executed, which is realized by a recursive descendant parser.

The principle we follow is to create objects as small as possible, which will know

–abstracting away from the context– how to execute the simple task they represent.

This goal is obtained by exploiting the encapsulation and composition mechanisms.

In order to understand how this is realized we first introduce the main components

present in the Object Oriented Interpretation Tree: the Process class and the Basic

Process and Composite Process concepts. The former is an object class present in

the implementation, while the latter are concepts which we will use to distinguish

the general behaviour of Process objects.

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3328

Fig. 2. Objects tree representing a = 1 ;; out(a)

3.2.1 The Process class

Process is a class representing a generic piece of JOLIE code. Process has a run()

method which performs the activities that the object represents.

3.2.2 Basic Process

A Basic Process is a Process composed by a single statement of the JOLIE language,

like an assignment operation, an output or an input one. The run() method in this

case performs such a statement.

3.2.3 Composite Process

A Composite Process is a Process composing other Process objects (by running

them in parallel, in a sequence or in a non-deterministic choice). The run() method

executes such composition and, to this end, exploits the run() method of the en-

closed Process objects.

Example 3.1 In order to illustrate how these concepts are used we use the follow-

ing example:

a = 1 ;; out(a)

The parser will create three Process objects (see Figure 2):

• A SequentialProcess (which is as a Composite Process) object that encloses

the following two processes:

· An AssignProcess (which is a BasicProcess) object that assigns the value 1 to

a.

· An OutProcess (which is a BasicProcess) object that prints on the console the

value of variable a.

When the runtime environment will have to interpret this code block, it will call

the run() method of the SequentialProcess object which will sequentially call

the run() method of the AssignProcess and the OutProcess objects it contains.

Note that the SequentialProcess object knows only that its children are Process

instances; it simply invokes their run() method without knowing anything about

their behavior (e.g., they could be themselves Composite Process objects).

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 29

Fig. 3. Communication medium and data protocols

Since this process encapsulation principle is followed in the entire OOIT, starting

the execution requires just the call of the run() method of the root node (which is

the object that contains the main process).

3.3 The communication core

The communication core provides an interface for supporting the communication

between services that allows us to abstract away from the following aspects:

• The communication medium.

• The communication data protocol.

Figure 3 reports some examples of communication medium and of communica-

tion data protocol. For instance the communication medium –which supports the

communication– can be a socket, a file or a pipe, while the communication data

protocol, which defines how the data should be formatted as well as the interaction

modalities that should be used to implement a message exchange, can be (we list

the most significant ones in the Internet context) HTTP, SMTP or SOAP.

The communication core supports such abstractions by means of the commu-

nication channel CommChannel object. The runtime environment exploits the com-

munication channels to send and receive data. Once instantiated, a CommChannel

object is able to send and receive CommMessage (communication message) objects

that are composed by:

• The operation name.

• An array of values.

The idea is that each communication channel must be associated to a commu-

nication medium and by a communication protocol and that it should be identified

by some data that depend on the particular protocols and medium. For instance

consider a channel, say c, associated to the SOAP data protocol and to the file

“host1@/home/services/op1.ss” communication medium. In order to send a mes-

sage M on that channel a process must write on the file

“host1@/home/services/op1.ss” the SOAP message containing M and, in order to

perform an input on that channel, the process must read (and consume the piece of

stream it reads) the “host1@/home/services/op1.ss” file by using the SOAP data

protocol on the input stream. Although such a interface is designed to support

such kind of flexibility on communication medium and data protocol, the current

available version of the JOLIE interpreter supports only the socket communication

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3330

medium and an internal default data protocol.

4 A purchase order case study

In this Section we present a purchase order case study extracted from the WS-BPEL

specifications. More precisely, we present the translation in JOLIE of an example

reported in [7]. The aim of this example is to show that JOLIE programs reveals

more human readable and manageable than WS-BPEL programs written in XML.

For the sake of brevity, we do not report the XML code; the interested reader can

find it in [7]. The example models a service for handling a purchase order. The

service starts its activity after the reception of a message on the Request-Response

operation sendPurchaseOrder. Before sending the response message the service

executes concurrently three processes defined within the body subroutine. One pro-

cess selects a shipper by invoking the shipping service operation requestShipping,

another process starts the price calculation by invoking the invoice service opera-

tion InitiatePriceCalculation and the the third process starts the production

scheduling by invoking the operation requestProductionScheduling of the pro-

duction scheduling service. It is worth noting that we abstract away from service lo-

cations that are represented by the names shippingServiceUri,

InvoiceServiceUri and productionSchedulingService. Furthermore, we re-

mark the use of linkOut and linkIn statements for synchronizing concurrent pro-

cesses.
locations {

shUri = shippingServiceUri,
inUri = InvoiceServiceUri,
schUri = productionSchedulingService

}

operations {
OneWay:

sendSchedule,
sendInvoice

Notification:
InPr = InitiatePriceCalculation,
SnShPr = sendShippingPrice,
rqPrSch = requestProductionScheduling,
snShSch = sendShippingSchedule

RequestResponse:
sendPurchaseOrder

SolicitResponse:
reqShp = requestShipping

}
variables {

customerInfo, purchaseOrder, IVC, shippingInfo, scheduleInfo
}

links {
ship-to-invoice, ship-to-scheduling

}

define body {
reqShp@shUri< customerInfo >< shippingInfo > ;;
linkOut(ship-to-invoice) ;; sendSchedule< scheduleInfo > ;;
linkOut(ship-to-scheduling)

||

InPr@inUri< customerInfo, purchaseOrder > ;;
linkIn(ship-to-invoice) ;; SnShPr@inUri< shippingInfo > ;;
sendInvoice< IVC >

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 31

||

rqPrSch@schUri< customerInfo, purchaseOrder > ;;
linkIn(ship-to-scheduling) ;; snShSch@schUri< shippingInfo >

}

main {
sendPurchaseOrder< customerInfo, purchaseOrder >< IVC >(call(body))

}

5 Conclusions

JOLIE represents a strict realization of the theoretical orchestration process calculus

presented in [3,4]. Along with the possibility to create an orchestrated system (by

running multiple instances of the interpreter, on the same computer or on different

machines), the internal structure of the interpreter is particularly suitable for future

extensions.

Future works will cover the implementation of a new format for locations, which

will be aimed to exploit the communication medium independency of the Commu-

nication Core. By now, every communication uses network sockets. The future

format will permit to specify the communication medium in a location definition,

giving the possibility to use sockets, files, internal pipes, etc. Moreover, another

objective is to make the operations block interacting with WSDL definitions. To

do so, we will exploit the object oriented internal operations implementation, along

with the Communication Core data protocol independency. In this way, an orches-

trator will be able to use other protocols in order to exchange data with external

applications.

JOLIE is also the starting point from which will be developed an implementation

for the choreography process calculus in [3], which will join JOLIE to realize a full

implementation for the theoretical framework developed in previous work [1,3].

References

[1] Busi, N., R. Gorrieri, C. Guidi, R. Lucchi and G. Zavattaro, Choreography and Orchestration: a synergic
approach for system design, in: Proc. of 3rd International Conference on Service Oriented Computing
(ICSOC’05), LNCS 3826 (2005), pp. 228–240.

[2] Busi, N., R. Gorrieri, C. Guidi, R. Lucchi and G. Zavattaro, Towards a formal framework for
Choreography, in: Proc. of 3rd International Workshop on Distributed and Mobile Collaboration (DMC
2005) (2005).

[3] Busi, N., R. Gorrieri, C. Guidi, R. Lucchi and G. Zavattaro, Choreography and orchestration
conformance for system design, in: Proc. of 8th International Conference on Coordination Models
and Languages (COORDINATION’06), LNCS to appear, 2006.

[4] Guidi, C. and R. Lucchi, Mobility mechanisms in service oriented computing, in: Proc. of 8th
International Conference on on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’06), LNCS to appear, 2006.

[5] IBM, “XLANG: Web Services for Business Process Design,”
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm .

[6] IBM and BEA, “BPELJ: BPEL for Java technology,”
http://www-128.ibm.com/developerworks/library/specification/ws-bpelj .

[7] OASIS, “Web Services Business Process Execution Language Version 2.0, Working Draft,”
http://www.oasis-open.org/committees/download.php/10347/wsbpel-specification-draft-120204.htm .

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–3332

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www-128.ibm.com/developerworks/library/specification/ws-bpelj
http://www.oasis-open.org/committees/download.php/10347/wsbpel-specification-draft-120204.htm

[8] Peltz, C., Web services orchestration and choreography, Web Services Journal (2003).

[9] W3C, “Web Services Choreography Description Language Version 1.0,”
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217 .

[10] W3C, “Web Services Description Language (WSDL) 1.1,” http://www.w3.org/TR/wsdl .

F. Montesi et al. / Electronic Notes in Theoretical Computer Science 181 (2007) 19–33 33

http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/wsdl

	Introduction
	JOLIE language overview
	Identifiers
	Program structure
	Statements
	Statement composers
	Example

	JOLIE interpreter architecture
	Structure overview
	Parser and Object Oriented Interpretation Tree
	The communication core

	A purchase order case study
	Conclusions
	References

