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Abstract

Service composition and service statefulness are key
concepts in Web Service system programming. In this pa-
per we present JOLIE, which is the full implementation of
our formal calculus for service orchestration called SOCK.
JOLIE inherits all the formal semantics of SOCK and pro-
vides a C-like syntax which allows the programmer to de-
sign the service behaviour and the service deployment in-
formation separately. The service behaviour is exploited
to design the interaction workflow and the computational
functionalities of the service, whereas the service deploy-
ment information deals with service interface definition,
statefulness and service session management. On the one
hand, JOLIE offers a simple syntax for dealing with ser-
vice composition and efficient multiple request processing;
on the other hand, it is based on a formal semantics which
offers a solid development base, along with the future pos-
sibility of creating automated tools for testing system prop-
erties such as deadlock freeness.

1 Introduction

Usually related to orchestration languages, service com-
position and service statefulness are key concepts in Web
Service system programming. Service composition deals
with the ability to aggregate existent services in order to
obtain a new one which offers more complex functionali-
ties, whereas service statefulness deals with the ability to
mantain the state of a conversation among different services
until the end of the so-called business activity. Orchestra-
tion languages, on the one hand, provide workflow con-
structs such as sequence, parallelism and non-deterministic
choice for composing communication interactions and, on
the other hand, they deal with statefulness by activating dif-
ferent workflow instances for each business task to man-
age. At the present, the most credited orchestration lan-
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guage is WS-BPEL (BPEL for short) [OAS], which is an
XML-based language developed by OASIS. BPEL provides
a great number of constructs, both for dealing with a work-
flow design paradigm and event based activities. Due to
its very rich XML-based syntax, programming directly in
BPEL is rather complex. For this reason specific tools for
supporting BPEL designers and programmers are needed,
such as those provided by activeBPEL [act] or Oracle [ora].
Moreover, BPEL is not equipped with a formal semantics.

In this paper we present JOLIE, Java Orchestration Lan-
guage Interpreter Engine, an opensource project released
under the LGPL license [Pro] and publicly available for
consultation and use [JOLb]. JOLIE is the full implementa-
tion of our formal calculus for service orchestration, called
SOCK [GLG106]. In SOCK we have formalized the ba-
sic features of the Service Oriented Computing paradigm
and we have provided a language syntax with few basic
constructs which allows for the composition of services.
SOCK is equipped with a formal semantics and is struc-
tured on three layers: the service behaviour layer, the ser-
vice engine layer and the services system layer. The service
behaviour layer allows for the design of service behaviours
by supplying computational and external communication
primitives inspired to Web Services operations and work-
flow operators (e.g. sequence, parallel and choice). The
service engine layer is built on top of the former and allows
for the specification of the service deployment, where it is
possible to design in an orthogonal way three main features
which directly deal with service instances, called sessions,
and service statefulness: execution modality, state persis-
tence and correlation sets. Execution modality deals with
the possibility to execute service sessions in a sequential or-
der or in a concurrent way; state persistence allows to spec-
ify if each session has its own independent state or if the
state is shared among all the sessions of the service engine.
Depending on the execution modality and state persistence
features we distinguish four service categories:

1. concurrent/not persistent: they are services which con-
currently execute their sessions where each of them is
equipped with its own state that expires when the ses-

IEEE
computer
psoaety



sion is terminated. Usually, BPEL processes belong to
this service category.

2. concurrent/persistent: they are services which concur-
rently execute their sessions. Sessions share a common
state which does not expire when session terminates
but the stored information are available for next ses-
sion executions. Usually, services which allow for the
management of databases belong to this service cate-

gory.

3. sequential/not persistent: they are services whose ses-
sions are forced to be executed following a sequential
order where each session is equipped with its own state
that expires when the session is terminated. For ex-
ample, a video game is accessed sequentially by each
player and each game is different from the previous
one.

4. sequential/persistent: they are services whose sessions
are forced to be executed following a sequential order,
where the state does not expire after a session termi-
nation but the stored information are available for next
session executions. A cashpoint machine could be con-
sidered as an example of service belonging to this cat-

egory.

The correlation sets mechanism, which is inspired by the
BPEL one, allows us to distinguish sessions initiated by dif-
ferent dialoguers by means of the values received within
some specified variables. It is worth noting that session
statefulness can be easily achieved by exploiting correlation
sets jointly to not persistent states. In these cases, indeed,
each session has its own state identified by a correlation set
which expires when the session terminates. Finally, the ser-
vices system layer defines the semantics of service interac-
tions (i.e. the functioning of message exchanging between
services), allowing for the reasoning about the behaviour of
the whole system.

JOLIE, whose preliminary behavioural language has al-
ready been presented in [MGLZ06], inherits all the formal
semantics of SOCK and provides a syntax which resem-
bles that of the C language. This is in contrast with the
most credited Web Services orchestration languages, such
as XLANG [Tha] and BPEL, which are based upon XML.
In particular, JOLIE supports the three layers of SOCK sep-
arately. The service behaviour layer and the service engine
one are user specifiable by means of two different files: the
behavioural file and the deployment file, respectively. On
the contrary, the service system layer is embedded in the
Communication Core of the JOLIE implementation as de-
tailed in Section 4. The interpreter implementation has been
written in Java, making a strong use of concepts such as co-
hesion, encapsulation and modularization, which we exploit
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in our internal architecture in order to permit the integra-
tion with different technologies and heterogeneous environ-
ments.

The behavioural file (denoted by the . o1 extension) con-
tains the workflow definition of the orchestrator, whereas
the deployment file (denoted by the .dol extension) con-
tains directives for the execution engine and specifies in-
formation for the integration of the orchestrator in the ser-
vice oriented architecture. The fact that JOLIE provides
two different files for programming the behaviour and the
system integration information of the service is a key fea-
ture; this allows the programmer for the reuse of existing
behavioural files in different service environments (by cou-
pling it with a new deployment file) and for the reuse of
deployment files with compatible workflows. It is worth
noting that the syntax offered by SOCK is mapped by the
languages of the two files. In fact, the behavioural language
maps the syntax of the service behaviour layer, whereas the
deployment language maps the syntax of the service engine
layer. As the services system layer is only a semantic layer
and does not specify a syntax, there is no corresponding
JOLIE language for it. As far as the behavioural language
is concerned, it is possible to interact with other services
by means of communication primitives inspired by WSDL
operations (One-Way, Request-Response, Notification and
Solicit-Response), to model timeouts, to synchronize in-
ternal parallel processes, to use the classic while loop
instruction and the if-then-else conditional statement.
Moreover, the programmer is allowed to compose state-
ments in a workflow by making sequences, parallelisms and
non-deterministic choices. Using its communication prim-
itives and its compositional operators, JOLIE can compose
other services by exploiting their input operations. Finally,
the behavioural language provides statements for user in-
put/output console interaction. As far as the deployment
language is concerned, its grammar structure is composed
by two main parts. The first part contains the deployment
directives (execution modality, the state mode (persistent or
not persistent) and the correlation set of the orchestrator;
these directives map the same features provided by the ser-
vice engine layer of SOCK for dealing with sessions and
service statefulness. The second part deals with interfaces
and contains all the information needed for interaction with
other services: operations, port types, protocol/port type
bindings and service deployment endpoints.

Summarizing, the main advantages of JOLIE are: (i)
the programmer-friendly syntax that permits fast orchestra-
tion prototyping and the subsequent step-by-step incremen-
tal extension; (ii) the distinction between the behavioural
and the deployment files supporting the full decoupling be-
tween the orchestration logics and the actual development
technologys; (iii) the solid formal semantics provided by the
SOCK calculus [GLGT06] allowing for the formal reason-



ing about JOLIE orchestrators.

2. JOLIE behavioural language overview

This section is devoted to a presentation of the JOLIE
behavioural language, which corresponds to the syntax of
the service behaviour layer found in SOCK. For the sake of
brevity, we report only the basic features of the language,
without considering fault and compensation handling in-
structions.

2.1. Program structure

A JOLIE program is defined as follows:
Program ::=

locations {id-list} |e

operations { Operation-declarations™ } | e

variables {id-list} |e

links {id-list} |e€

definition™

main { Process }

definition™
definition ::= def ine id { Process }
where we represent non-terminal symbols in italic and the
Kleene star represents a zero or more time repetition. An id
represents an unambiguous identifier (i.e. a unique name),
whereas an id-list is a list of them. The first program part is
declarative: the programmer uses it to specify the locations,
operations, variables and internal synchronization links it is
going to use in the workflow code. The second part defines
the workflow of the orchestrator, formed by an entry point
(main) and user-defineable procedures (definitions). For
the sake of clarity, the various program parts are individu-
ally explained in the following.

Locations A location represents a communication end-
point to a service, used by JOLIE to create a communi-
cation channel. The behavioural program requires only an
id-list for location declarations: their real value is to be
specified in the deployment file. This allows us to decou-
ple the workflow design from a communication detail: lo-
cation changes of other services are reflected only in the
deployment file, leaving the behaviour of the orchestrator
unmodified.

Operations Operations are used to interact with other
services, invoking one of their exposed functionalities.
JOLIE supports the four operation types defined in the
WSDL specification: One-Way, Request-Response, Notifi-
cation, Solicit-Response. One-Way and Request-Response
are input operations: a One-Way operation simply waits
for a message and receives it, whereas a Request-Response
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operation waits for a message, executes a code block and
then sends a response message to the invoker. Notification
and Solicit-Response are, respectively, the output counter-
parts of input operations: a Notification operation is used to
invoke a One-Way operation of another service by sending
a message, while a Solicit-Response operation invokes a
Request-Response operation by sending a message and
then remains blocked until it receives the response. The
non-terminal follows:
Operation-declarations ::=
OneWay : SingleWayOp-decl*
| RequestResponse : RequestResponse-decl*
| Notification:SingleWayOp-decl*
| SolicitResponse:SolicitResponse-decl*
SingleWayOp-decl ::= id<var-type-list>
RequestResponse-decl ::=
id<var-type-list><var-type-list>
SolicitResponse-decl ::=
id<var-type-list><var-type-list>
var-type-list ::= var-type*
var-type ::= int | string | variant

A One-Way operation needs a list of variable types
(var-type-list) in its declaration. When the interpreter re-
ceives a message for that One-Way operation, it checks the
incoming message value types with the given var-type-list:
if the types do not correspond, the message is rejected.
A Notification operation variable types are used when
the interpreter sends a message with that operation: the
variables used in the workflow are automatically cast to the
types written here before sending the message. Request-
Response operations need two lists, the first for input
variable types and the second for output variable types.
Solicit-Response operations, inversely, use the first list for
output variable types and the second list for input variable
types. Supported variable types are int (a Java based
integer), string (a Java based string) and variant.
The variant type matches with both int and string: if
specified in an input var-type-list, the interpreter accepts
any type for that value and the corresponding incoming
variable will implicitly take that type, while if specified in
an output var-type-list the related variable in the workflow
maintains its current implicit type. Let us comment the
following example:

operations {
OneWay:
myFirstOW< int,
RequestResponse:
myRR< int, int,
Notification:
myNotification<>
SolicitResponse:
mySR< int, string,

}

string >, mySecondOW<>
variant >< int, variant >

variant >< int, int >




where myFirstOW receives two values, which must be an
integer and a string value, respectively. If the received val-
ues are not of the right type, JOLIE will refuse to receive
the message. In the case of mySR, the interpreter will con-
vert its first value to an integer, its second to a string and its
third will maintain its current type.

Variables JOLIE makes use of dynamic typing: variable
types are not declared and errors are caught during pro-
gram execution (similar behaviours can be found in other
languages, e.g. Perl, PHP and JavaScript). The interpreter
needs only that the program declares in advance the vari-
ables it is going to use during the execution, specifying an
id-list in the variables block. Implicit supported vari-
able types are integers and strings.

Links Links are used for internal parallel processes syn-
chronization. As seen for variables, the 1 inks declarative
block requires only a list of identifiers.

Definitions Definitions allow the programmer to define
procedures, which will be callable thereafter by using their
identifiers as statements. An example of a procedure defini-
tion follows:

define printHello { out( "Hello, world!" ) }

Main The main block is the starting procedure of the
program execution. Informally, it is comparable to the main
function of a C or Java program.

2.2. Statements

For the sake of brevity, we show only a short overview
of the available instructions; a more detailed description is
available in [MGLZ06].

The communication primitives are:

One-Way. id<id list> : waits for a message on the opera-
tion whose name is specified with id and stores the received
values in the id list variables.

Request-Response. id<id list> <id list> ( Process ) :
waits for a message on the operation whose name is spec-
ified with id, stores the received values in the first id list
variables, executes the code block Process and sends a re-
sponse message composed with the values of the second
id list variables. It is worth noting that, differently from
BPEL, in JOLIE the Request-Response operation is spec-
ified atomically, where Process represents the activities to
be executed between the request reception and the response
sending.

Notification. id @id<id list> : sends a message on the op-
eration whose name is specified with the first id to the cor-
responding One-Way operation (which is specified in the
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deployment file), which contains the values of the id list
variables, to the communication endpoint represented by
the second id. The second id can be a location declared
in the locations block or a variable containing a string that
can be evaluated as a location. It is worth noting that such a
feature implements location mobility. It is possible, indeed,
to receive a location which can be exploited afterwards for
executing a Notification or a Solicit-Response statement.
Solicit-Response. id @id<id list> <id list> : send a mes-
sage on the operation whose name is specified with the first
id to the corresponding Request-Response operation, com-
posed with the values of the first id list variables, to the com-
munication endpoint represented by the second id (which
can be, as for the Notification statement, a location or a
variable). Once the message is sent, it waits for a response
message from the invoked Request-Response and stores the
received values in the second id list variables.

Basic program flow control statements are provided
through the classic while and if-then-else con-
structs (which follow the same syntax of the C language),
along with the possibility to call a procedure by writ-
ing its identifier. Internal parallel processes synchroniza-
tion is performed by using the 1inkIn and linkOut
statements, which require an internal synchronization link
id as a parameter. There are also a no-op statement
(nullProcess) and a sleep one; the latter is particu-
larly useful for modeling a timeout when waiting for a com-
munication input or a parallel activity. Moreover, JOLIE
provides the possibility to evaluate expressions and make
variable assignments.

It is worth noting that, differently from BPEL, JOLIE is
able to interact with the executing user, thanks to the in
and out instructions. The former waits for a user console
input and stores it in a variable, while the latter displays a
message on the screen.

Statement composition JOLIE provides three ways to
compose statements: making a sequence, a parallelism or a
non-deterministic choice. Every composition can be formed
by any number of elements.

Sequences are composed by exploiting the ; operator,
so that A ; B executes A, waits for it to finish and then
executes B.

Parallelisms are composed by the | operator. A | B
executes A and B in parallel, and waits for the termination
of both.

A non-deterministic choice can be expressed among dif-
ferent guarded branches by using the ++ operator. A branch
guard can only be an input operation, a 1 inkIn statement,
an in statement or a s1eep statement, whereas the branch
can be any possible process. Let

(!Jhpl), (92,192), cees (9n—17pn—1), (gn,pn)



be branches where ¢ is the branch guard and p the guarded
process. The syntax of the non-deterministic choice fol-
lows:

(g1l pi++ (g2l pa++. . .4+ [gn—1]1pn—1++ [gnlDn

The guards are defined within square brackets. When a non-
deterministic choice is reached, the interpreter waits for an
input on one of its guards. Once an input comes for a guard
gi, the related process p; is executed and the other branches
are deactivated. It is worth noting that the in, 1inkIn and
sleep instructions are useable as branch guards; this is
useful to permit user interaction, receive inputs from inter-
nal processes or setting timeouts. As a reference, notice that
the non-deterministic choice construct follows a behaviour
similar to that of the pick activity found in BPEL where,
differently, it is not possible to specify inputs on internal
links.

The statement composers interpretation priority is: ; |
++. In the following example, where A, B, C and D are
statements, we show how priority works.

[regql<a>] A | B ; C ++ [reg2<b>] D ; C ; B | D

This code fragment contains a non-deterministic choice be-
tween two branches. The branches are guarded by two One-
Way operations: (regl<a> and reg2<b>). Considering
the operator priority, the same code would be explicited as
follows.

[regl<a>]

(a] (B
[reg2<b>]
((Dbj; Cj; B)

i C) )
++
| D)

2.3. The factorial service

We present now a simple, yet practical, example of how
to write a correct behavioural file for the realisation of a ser-
vice which calculates the factorial of a given number. The
code follows:

operations {
RequestResponse:
calculateFactorialRR< int >< int >

variables { i, n, result }
define calcFactorial {
while( i < n ) {
i =1+ 1; result =
}

}
main {
i = 0; result = 1;
calculateFactorialRR< n >< result >
( calcFactorial )

result % 1
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The orchestrator initializes its variables (i, n and
result) and then waits for a request for the operation
calculateFactorialRR. When a correct request (i.e.
a message containing a single int value) for the operation
is received, JOLIE will call the calcFactorial proce-
dure, and then send back to the caller the value stored in
result.

3. JOLIE deployment language

The deployment file is composed by two main parts: the
first one contains deployment directives, whereas the sec-
ond defines the interfaces needed for the integration of the
orchestrator in the target service oriented architecture. In
the following we examine the instructions offered by the
deployment language, providing at the end an example of
their use.

3.1. Deployment information structure

The JOLIE deployment information structure is repre-
sented by the following grammar:
Deployment-information ::=

state { State-mode }*

execution { Execution-modality }”*

cset { id-list }7

locations { Location-definitions }°*

interface { Interface-definition } "

where we exploit the * notation to show that a block
is optional and may be left unspecified. It is worth noting
that the first three parts (state, execution and cset)
correspond to the service engine layer syntax of SOCK. In
the following we explain the structure elements separately.

3.2. Deployment directives

State persistence The state instruction indicates how
the active sessions access the variables. The programmer
can choose between two values:

State-mode ::= persistent | not_persistent

On the one hand, in a persistent state mode the vari-
ables are treated as shared among all the sessions; on the
other hand, a not_persistent state mode makes every
session owning its own independent variable state. If the
state block is left unspecified, JOLIE sets its value to
persistent.

Execution modality JOLIE supports three possible exe-
cution modalities:
Execution-modality ::=

single | sequential | concurrent



The interpreter handles sessions depending on the value of
the execution block:

single: the orchestrator does not create sessions, it just
runs the code only one time.

sequential: the orchestrator creates sessions sequen-
tially, enqueuing the incoming requests.

concurrent: the orchestrator creates sessions concur-
rently, handling all the requests in parallel.

If the execution block is left unspecified, JOLIE sets its
value to single.

The interpreter generates a session when the first in-
put operation statement, specified in the behavioural file,
receives a message. Notice that the input operation can
be a One-Way, a Request-Response or a non-deterministic
choice which comprehends one or more of them. Consider
the following main procedure:

main {
out (

}

which we suppose is executed with a concurrent execution
modality and a not persistent state mode. This code block
prints the Starting. . . string, then waits for input mes-
sages for the myOneWay operation. Whenever an input
message for myOneWay is received, JOLIE creates a new
session, which prints the received value on the screen.

It is worth noting that the concurrent modality in-
troduces a problem related to system resources; in JOLIE,
every concurrent session is executed by a separate thread.
Such a mechanisms offers real concurrency and good scal-
ability, but threads have a cost in terms of system memory
allocation. In order to address this issue, JOLIE offers a
command line parameter which permits to specify a connec-
tion limit: once the number of running sessions reaches the
connection limit, JOLIE begins to enqueue the incoming
requests. Before JOLIE starts their processing, enqueued
requests have to wait for the number of running sessions to
decrease. The command line parameter for the specifica-
tion of connection limit is -1 [number]; an example of
its use follows:

"Starting..." ); myOneWay< x >; out( x )

jolie -1 1000

which tells JOLIE to run at most one thousand sessions at a
time. In case the - 1 option is not passed, JOLIE exploits an
heuristic approach to decide dynamically if a request should
be enqueued or not. The aim of the heuristic choice is to
avoid swapping as much as possible, which would result in
a seriously slow execution.

Correlationset Sessions often require to be distinguished
and accessed only by those invokers which hold some spe-
cific references. In other paradigms, such as the Object-
oriented one, such references are managed by the under-
lying framework. Unfortunately, we can’t make such an
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assumption in the service oriented computing model; corre-
lation sets, introduced by BPEL, allow us to address such an
issue. An orchestrator may define a set of correlated vari-
ables through the cset instruction (e.g. cset { a, b,
c }): the specified set becomes the correlation set to use
for session referencing. The functioning of correlation sets
in SOCK (and thus, in JOLIE) is extensively explained in
[GLG™06]. For the sake of clarity, in the following we re-
port an example of their usage, modeling a simplified mech-
anism for the creation of new gaming sessions of a one
player game:

main {
keepRun = 1; createGame<>< 1d >(
while( keepRun )
makeMove< id, move >;
if ( move == "quit" )
else { playMove }

newGame ) ;
{ keepRun =

0}

}

which we suppose coupled with the following deployment
directives:

state { not persistent }
execution { concurrent }
cset { id }

The behavioural code waits for a message for the
createGame operation. Once the orchestrator receives a
message for that operation, it creates a new concurrent ses-
sion, which calls the newGame procedure (responsible for
getting a fresh game id by interacting with another service)
and sends back the identifier of the created game. The or-
chestrator then enters in a loop which accepts game moves
by means of the makeMove operation. The user can end
the gaming session by issuing the string quit as a move.
The problem is related to the fact that there could be a lot
of sessions in concurrent execution; so, when a message
for makeMove comes, we need to decide which session
should receive it. The correlated variable id addresses this
issue: once the interpreter reads its value in the message
for makeMove, it chooses the session which has the same
value stored in the same variable. For example, suppose that
we created two gaming sessions, session A with 1d=2 and
session B with id=4, and that an invoker sends a message
containing the values < 4, ”quit” >. Such a message will
be routed by the interpreter to session B, because the first
value of the message corresponds to the actual value of the
id variable within its session state.

Locations Locations declared in the behavioural file must
have their value specified in the 1locat ion block of the de-
ployment file:
Location-definitions ::=

id = "URI" Location-definitions | €



where URI is to be intended as a standard Uniform Re-
source Identifier. Currently, JOLIE supports only socket
based communications. An example containing location
definitions follows:

locations {
myService = "socket://www.adnsname.com:80",
ipUri = "socket://123.12.13.111:3000"

}

3.3. Interface definition

The interface block describes the interface offered
by the orchestrator, along with the protocols to use for in-
voking the input operations of other services. This deploy-
ment file section is greatly inspired by WSDL, being our
first step for a WSDL export tool. Indeed, the non-terminal
Interface-definition contains elements similar to these found
in a WSDL file:

Interface-definition ::=

operations { Operation-defs }

inputPortTypes { PortType-def* }

outputPortTypes { PortType-def* }
bindings { Binding-def* }

service { Service-def* }

Operations The operations block permits to specify
interface related operation information, such as the variable
names to use in message exchanging (particularly useful
for SOAP based transmissions) and the input operation
name an output operation has to invoke. The syntax is:
Operation-defs ::=

OneWay : OneWay-def ™

| RequestResponse : RequestResponse-def ™

| Notification:Notification-def*

| SolicitResponse:SolicitResponse-def*
OneWay-def ::= id<id-list>
RequestResponse-decl ::= id<id-list><id-list>
Notification-def ::= id<id-list> = id
SolicitResponse-decl ::= id<id-list><id-list> = id
where the id-lists in the angular brackets represent
the bound variable names to use in message exchanging.
The output operation definitions require an id to be bound
through the = operator: that id will be used to identify the
input operation to invoke on the other service when the
behavioural code will call the output operation.

Input port types Input port types are collections of in-
put operations; they are used in the bindings and the
service blocks to define the orchestrator input interface.
Thus, each port type requires only a non-empty id-list of in-
put operations:
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PortType-def ::=id : id-list
where id is the name of the created port type.

Output port types Counterparts of input port types, out-
put port types define collections of output operations; they
are used only in the bindings block, in order to define
the protocol to use when calling an output operation of the
bound output port type. Output port types are defined with
the same non-terminal of input port types, PortType-def.

Bindings A binding creates a port from a port type and
defines its communication protocol. The syntax is:
Binding-def ::=id :id :id

where the first id is the name of the port to create, the sec-
ond id is the port type to use and the third id is a communi-
cation protocol. Currently, JOLIE supports fully a propri-
etary communication protocol (named SODEP!) and par-
tially SOAP (only for flat structured messages). Therefore,
the programmer can use the sodep or soap keyword to
specify a port protocol.

Services Services represent the input interface of the or-
chestrator. The syntax follows:

"URI" id

where URI is a standard Uniform Resource Identifier and
id is an input port specified in the bindings section.
Each service entry define an input communication endpoint
which other services can use to invoke the relative input port
operations.

Deploying the factorial service In the following, we dis-
cuss the deployment information to be coupled with the be-
havioural code presented in 2.3. The code follows:

state { not persistent }
execution { concurrent }
cset {}
interface {
operations {
RequestResponse:
factorialRR =
1
inputPortTypes { factorialPortType: factorialRR
bindings {
soapFactorialPort:
1
service
"socket://localhost:2555":

}

factorialRR< number >< result >

factorialPortType : soap

soapFactorialPort

}

Here, we instruct the interpreter to execute ses-
sions using a not persistent state mode (state {
not_persistent }) and in a concurrent way
(execution { concurrent }). We do not need

I'Simple Operation Data Exchange Protocol

—



to specify anything in the correlation set, as the service
does not need to identify its sessions. Furthermore, in the
operations block, we specify the names the variables
assume in factorialRR message exchanging (number
and result). This approach allows the programmer to
decouple the behavioural programming from the SOAP
message naming details: the variables contained in the
factorialRR statement of the behavioural file will
be automatically renamed to number and result for
message creation and receiving, respectively. Finally, we
create an input port (factorialPortType) containing
our operation, we bind the soap protocol to it (in the
bindings block) and we expose it on a socket based
service, network port 2555 (in the service block).

4. JOLIE internal architecture

In this section we report an overview of the internal ar-
chitecture of JOLIE, along with its connections with the
semantic layers of SOCK, which are the service behaviour
layer, the service engine layer and the services system layer.
A more accurate description of the implementation details,
including a graphical representation of the architecture, is
available in [MGLZ06].

Code analysis JOLIE offers a library for code analysis,
which is the same used by the interpreter itself for pars-
ing its input files and obtain an optimized abstract syn-
tax tree. The library offers the possibility to exploit the
Visitor object oriented design pattern [Wik], in order
to analyze and/or manipulate the parsing result. For exam-
ple, the JOLIE internal code optimizer and program well-
formedness checker (which takes its rules by the SOCK
specifications) are implemented by means of this approach.

Object Oriented Interpretation Tree Responsible for
the execution of the behavioural code, the Object Oriented
Interpretation Tree (OOIT) is a tree composed by small ex-
ecution units. Each semantic rule specified by the service
behaviour layer is implemented by an OOIT execution unit.
This approach based on encapsulation makes very simple to
update the interpreter semantics w.r.t. new developments of
SOCK. The OOIT is produced by JOLIE starting from the
optimized abstract syntax tree.

Runtime environment The runtime environment handles
the creation of new sessions, the synchronization of pro-
cesses and the service state. It interacts with all the other
components of JOLIE and abstracts the OOIT from session
state handling. This component implements rigorously the
semantics of the service engine layer.
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Communication core The communication core permits
to keep the OOIT separated from communication related
problematics. This component handles incoming connec-
tions and internal message routing to the various sessions,
along with the service input interface deployment as spec-
ified in the service block of the deployment file. More-
over, its modularized design permits to implement easily
support for new protocols and communication mediums
(such as files and local memory). The communication core
implements the semantics of the services system layer, en-
abling JOLIE to communicate with other services.

5. A business case study

In this section we present a typical business scenario pro-
grammed with JOLIE, where there are five participants in-
volved: a customer, a market, a service register, a supplier
and a bank. The customer wants to buy a product and asks
for its price to the market. The market queries the register
in order to obtain a supplier which is able to satisfy the cus-
tomer and then it requests the supplier for the price. The
market forwards the price to the customer, that decides ei-
ther to buy or not. If it decides to buy, the market requests
for the order to the supplier and, concurrently, it asks to the
bank to perform the financial transaction. In order to do
that, the bank will request both the customer and the sup-
plier for the bank data. At the end, the bank will notify the
customer, the supplier and the market for the transaction
termination.

aetBankOrcer

aetBankData

getBuro

Figure 1. Example architecture

In Fig. 1 we report a graphical representation of the sys-
tem, where circles represent services, black rectangles rep-
resent Request-Response operations, white rectangles rep-
resent One-Way operations and arrows represent the inter-
actions among the services. The system is composed by
the following services: the Register Service REG, the Bank
Service composed by the Bank Information Service BI and

execOrder



the Bank Master Service B, the Supplier Service composed
by the Supplier Information Service SI and the Supplier
Master Service S, the Market Service M and the Customer
C. The Bank Information Service and the Supplier Informa-
tion Service model services which manage persistent infor-
mation repositories such as the bank account database and
the product list database, respectively.

In the following, we present the code for the market ser-
vice. For the reader’s convenience, each operation state-
ment has been suffixed with its respective type: OW for One-
Way operations, RR for Request-Response operations, N for
Notification operations and SR for Solicit-Response opera-
tions. The complete and executable example of the entire
service system can be downloaded at [JOLa].

main {
getPriceRR< quantity,
< euro >(
getIdByQuerySR@register< product >< supIld >;
getDataSR@register< supld >
< supLocl, supLoc2 >;
myLoc = "socket://localhost:2564";
getEuroSR@suplLocl< product >< price >;
euro = price x quantity;
)i ack = "ok";
[ sleep( 3000 ) 1 (
ack = "timeout";
buyRR< quantity, clientLoc,
< ack >( nullProcess )
)
++
[ buyRR< quantity, clientLoc,
< ack >( nullProcess )]
if ( conf=="yes" ) {
orderSR@supLoc?2
< quantity, clientLoc,
< idorder »>;

clientLoc, product >

product, confx>

conf >

product,

product >

paySR@bank
< idorder, clientLoc,
supLoc2, myLoc, euro >< bkId >;

receiptOW< bkId, idtran >;
commitN@clientLoc<>

Since the Market Service has to manage differ-
ent requests from different clients, it is deployed
by exploiting a concurrent execution modality and
a not persistent state where the correlation set is
{product, quantity,clientLoc,bkId}. Variable
product contains the product type, variable quantity
contains the requested quantity for the given product,
variable clientLoc contains the location of the client
and, finally, variable bkId contains the unique identifier
for the Bank Master Service session. The behaviour of
the Market Service starts with the Request-Response
statement get PriceRR, which takes as inputs the vari-
ables quantity,clientLoc,product and returns
the product price. Between the request message and the
response one, the body of getPriceRR performs two
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invocations to the Register Service (getIdByQuerySR
and getDataSR operations), in order to retrieve the
supplier location. The supplier location is exploited
for requesting the product price to the Supplier Service
(getEurosSR operation). Once the getPriceRR state-
ment is performed, the Market Service starts a race between
an internal timeout and the confirmation message from the
customer. Such a race is programmed by means of a non-
deterministic choice between the statement sleep(3000) and
the Request-Response statement buyRR. It is worth noting
that if the timeout occurs, the buyRR operation is still able
to receive a message from the customer, but it returns the
value "timeout" in variable ack, which will be tested
by the customer application for verifying if the Market
Service session has expired. If the customer sends its
message before the timeout occurs and confirms to buy, the
Market Service invokes the Supplier for initiating the order
(ordersSR operation) and then the Bank Master Service
for initiating the financial transaction (paySR operation).
Finally, it waits for a receipt from the Bank Master Service
and then sends a commit to the customer.

6 Related works

JOLIE represents a complementary approach fo ser-
vice composition w.r.t. BPEL. The main differences can
be summarized as follows. JOLIE supports a Java-like
syntax that is simpler than the XML one, which needs
graphical tools for managing its complexity; we think that
textual and graphical programming can be both useful as
pseudocode and flow-charts in traditional imperative pro-
gramming. JOLIE supports decoupling between behaviour
and deployment as partially done also by BPEL/WSDL; in
JOLIE correlation sets are considered at the level of de-
ployment instead of behaviour and, moreover, we permit
the specification of execution modality and state persistence
which are not supported by BPEL/WSDL. Finally, JOLIE
is built upon the solid formal semantics provided by the
SOCK calculus. On the contrary, the official semantics of
BPEL is informal; several (and sometimes unrelated) for-
malizations of BPEL have been given, but usually these
formalizations do not cope with the entire very rich BPEL
syntax (see [BKO06] for an overview).

Relevant orchestration languages based upon a process-
calculus formal semantics are inspired by the 7-calculus in-
stead of SOCK, see e.g. [CLMO05] and [FGKO03]. Strong
points of these works are the easy manipulation of XML
messages and the underlying scalable architecture. The sep-
aration between behaviour and deployment, which is a pe-
culiar feature of JOLIE, on the other hand better supports
an architecture which is communication technology inde-
pendent. Another difference is that we more closely re-
flect the message passing style of Service Oriented Archi-



tectures based on operations and correlation sets, instead of
exploiting the typical channel based communication of the
m-calculus.

A different approach with respect to the above textual
languages is showed in [act, ora, PAO3], where service com-
position is obtained by means of visual programming lan-
guages. We think that textual and graphical programming
can be both useful in the context of orchestration program-
ming as pseudocode and flow-charts in traditional impera-
tive programming; only the next few years of research on
Service Oriented Computing will clarify the relative advan-
tages and disadvantages of the two approaches.

7. Conclusions

We presented JOLIE, Java Orchestration Language In-
terpreter Engine, and showed a practical example of service
composition through its usage.

Future works will cover the introduction of structured
data values, in order to manipulate XML messages. In or-
der to improve furthermore our compatibility with the Web
Services technology, we plan to exploit the new data han-
dling syntax jointly with the JOLIE deployment language to
make possible for the interpreter to understand WSDL files
of other services and to publish its own WSDL file. By ex-
ploiting the flexibility of the internal communication core,
we plan to support SOAP based communications and other
IPC (Inter Process Communication) mechanisms. Follow-
ing recent developments of SOCK, a fault and compensa-
tion handling mechanism for JOLIE has been developed
and is under testing. Finally, future versions of JOLIE will
permit to integrate Java code in an orchestrator workflow.
This will permit to use JOLIE even for complex client ap-
plications or heavy computational tasks.
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