
Service-oriented programming with Jolie

Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

Abstract The wide adoption of service-oriented computing has led to a heteroge-
neous scenario formed by different technologies and specifications. Examples can
be found both at the design level —the frameworks for defining services and those
for defining their coordination feature fundamentally different primitives— and at
the implementation level —different communication technologies are used depend-
ing on the context.

In this chapter we present Jolie, a fully-fledged service-oriented programming
language. Jolie addresses the aforementioned heterogeneity in two ways. On the
one hand, it combines computation and composition primitives in an intuitive and
concise syntax. On the other hand, the behaviour and deployment of a Jolie program
are orthogonal: they can be independently defined and recombined as long as they
have compatible typing.

1 Introduction

Service-Oriented Computing (SOC) is a design methodology that focuses on the
composition of autonomous entities in a system, called services. SOC abstracts
from the implementation details of services by imposing a standard communica-
tion mechanism between the entities in an SOA (Service-Oriented Architecture).

Fabrizio Montesi
IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S - Denmark
e-mail: fmontesi@itu.dk

Claudio Guidi
University of Padova, Dipartimento di Matematica, Via Trieste 63, 35121 Padova - Italy
e-mail: cguidi@math.unipd.it

Gianluigi Zavattaro
University of Bologna, INRIA Focus Research Team, Mura A. Zamboni 7, 40127 Bologna - Italy
e-mail: zavattar@cs.unibo.it

1

2 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

For instance, the Web Services specifications [41] impose the use of the SOAP pro-
tocol [40], which builds on XML as a data format and HTTP as the transport. Apply-
ing such a restriction, it is possible to have SOAs where each service is potentially
implemented in a different technology, such as Java, C, or C#.

SOC is widely adopted in many different settings; here we list some notable ex-
amples. Web Services are widespread and supported by many industrial technolo-
gies, such as Java and .NET; they are especially used in enterprise software devel-
opment. Applications in modern Linux distributions, e.g. hardware information ser-
vices and desktop environment components as in the KDE SC [7] and GNOME [3],
communicate locally using the D-Bus technology [2]; in the Windows operating
system, DCOM was created to address the same issue. Many web applications ex-
pose REST APIs to allow external applications to interact with them. All of the
aforementioned technologies make it possible for applications to communicate by
means of loosely coupled messaging systems. The adoption of SOC, however, has
led to a problem of fragmentation. Many different service-oriented technologies and
specifications, such as the ones listed above, target specific requirements and can-
not be integrated without ad-hoc interventions, which usually imply the writing of
some adapters for the message formats and the communication semantics. In other
words, there are many technologies and applications based on common conceptual
ground that are unable to interoperate without ad-hoc interventions, which can be
very costly, hard to maintain, and prone to breaking wrt future system modifications.

From the perspective of the methodologies and tools for composing SOAs the sit-
uation is less fragmented, but there is a marked separation between behavioural and
architectural composition. Behavioural composition deals with the specific series
of interactions (message exchanges) to be performed in order to reach a goal. For
example, an E-Commerce service supporting the purchase of some products may of-
fer a buy functionality implemented by composing a warehouse service for sending
the product to the client and a bank service for handling the payment. Services that
behaviourally compose other services are usually called orchestrators. The most
renowned technology for performing behavioural composition is WS-BPEL [35], a
language based on the Web Services specifications. Architectural composition, on
the other hand, deals with the topological structure of an SOA, managing its execu-
tion and integration. For example, an application server may manage the execution
of multiple applications in the same environment; or, a proxy may be used to bridge
two SOAs that run in separate networks. A more generic approach to bridging is
represented by mediators. These may work on different levels, e.g., by allowing a
service available on Bluetooth or a LAN to communicate with another service on the
Internet, or by performing data format conversion. Notable examples of mediators
are all the Enterprise Service Bus (ESB) technologies [18] and the aforementioned
D-Bus [2]. Differently from the case of behavioural composition, we are not aware
of programming languages supporting architectural composition: the latter is usu-
ally obtained through tools that are specific to some architectural patterns.

To the best of our knowledge, the literature lacks proposals of languages that
enable SOA designers to deal effectively with both behavioural and architectural
aspects, by providing a satisfactory support for solving the technological fragmen-

Service-oriented programming with Jolie 3

tation problem reported above. We argue that offering such a language would sim-
plify greatly the design of SOAs, since designers would have to deal with a single
and homogeneous set of concepts instead of many different tools.

In this chapter we present the Jolie programming language [6], our proposal for
filling this gap. Jolie is the result of our attempt to obtain a common denominator
that coherently offers the main features of SOC and their integration with exist-
ing technologies. We aim at offering a programming language for defining the base
services, their organization in an SOA, and the behaviour of the orchestrators re-
sponsible for the supervision of the interactions among the services, possibly using
different communication technologies. In our opinion, Jolie is the first language that
positively responds to the problems of heterogeneity of both service communication
technologies and compositional aspects.

A Jolie program defines a service and is a composition of two parts, called
behaviour and deployment. A behaviour defines the implementation of the func-
tionalities offered by a service; behavioural primitives include communication and
computation constructs. However, these do not deal with how communications are
supported: they abstractly refer to communication ports, which are assumed to be
correctly defined in the deployment part. The latter deals with the actual definition
of the necessary information for supporting communications. Therefore, communi-
cation ports establish a notion of compatibility between the behaviour and deploy-
ment parts of a program. This separation of concerns addresses the first form of
heterogeneity mentioned above: a behaviour can be deployed using various com-
munication media and data protocol combinations.

The deployment part can also make use of architectural primitives for handling
the structure of an SOA. For instance, Jolie supports embedding and aggregation.
Embedding deals with the structure of the execution contexts in which services op-
erate, establishing a hierarchy of services. It allows a service to run another one as
a sub-service. An embedder can communicate with an embedded service through
an ordinary communication port: its behaviour abstracts from embedding, so if the
programmer decides in the future not to embed a service and instead to refer to an
external one, the behaviour does not need to be changed. Embedding has also some
performance benefits. Aggregation, on the other hand, deals with the architecture
of the connections in an SOA. It allows for the creation of proxy services that can
forward invocations to other services. Aggregation is purely related to deployment,
since it takes only communication ports as parameters and creates bridges between
them. The flexible aggregation and embedding mechanisms are examples of how
Jolie addresses the second form of heterogeneity mentioned above. Remarkably,
their design also elicits that the behavioural and architectural composition mecha-
nisms can abstractly interact through the shared concept of communication ports.
Structure of the chapter. § 2 presents the basic constructs of the language; § 3
shows how Jolie handles complex behavioural composition by supporting stateful
sessions and error recovery; § 4 introduces architectural composition with embed-
ding and aggregation; we show a practical example that uses our main composition
primitives in § 5; § 6 discusses related work; § 7 reports conclusions, references to
additional resources, and future work.

4 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

2 Language basics: behaviour and deployment

A Jolie program defines an entity in an SOA (a service). Programs are run by the
Jolie interpreter, and are usually stored inside files with the .ol extension1. A pro-
gram is made by two parts, called behaviour and deployment.

The behavioural part defines the actions to be performed by the service, such as
internal computations and input/output communications. This part abstracts from
how communications will actually be supported. For example, a behavioural prim-
itive may express the action “ask the calculator service to add the numbers 2 and 6
and then get a result back”, without knowing exactly how to reach this calculator
service (or which kind of communication protocol it uses).

The deployment part complements the behavioural part, introducing the neces-
sary information for establishing communication links between services. It can also
be used to define the structure of an SOA, as we will show later.

The structure of a Jolie Program is thus given by the following syntax:

Program ::= D main { B }

where D represents the deployment part and B the behavioural part. The main pro-
cedure is the execution entry point.

2.1 Behaviours

The syntax for expressing service behaviours in Jolie combines the message-
passing and the imperative programming styles. The former models composition
of the behaviours of other services, whereas the latter enables internal computation.
Fig. 1 reports a selection of the syntax for behaviours.

B ::= η (input)
| η (output)
| if(e) B1 [else B2] (cond)
| while(e) B (while)
| B ; B′ (seq)
| B | B′ (par)
| { B } (block)
| x = e (assign)
| nullProcess (inact)

η ::= o(x) (one-way)
| o(x)(e){ B } (request-response)

η ::= o@OP(e) (notification)
| o@OP(e)(y) (solicit-response)

| [η1] { B1 } . . .[ηn] { Bn } (input choice)

Fig. 1 Jolie behavioural syntax (selected rules)

Communications. Rules (input), (output), and (input choice) implement commu-
nications. An input η can either be a one-way or a request-response. Statement

1 A Jolie program definition may even be retrieved from URLs or local memory.

Service-oriented programming with Jolie 5

(one-way) receives a message for operation o and stores its content in variable x.
(request-response) receives a message for operation o in variable x, executes be-
haviour B (called the body of the request-response input), and then sends the value
of the evaluation of expression e to the invoker. (notification) and (solicit-response)
dually implement the outputs towards the input primitives. (notification) sends a
message containing the value of the evaluation of expression e. (solicit-response)
sends a message with the evaluation of e and then waits for a response from the
invoked service; the response value will be assigned to variable y. In the output
statements, OP is an output port name. This name acts as a reference to an output
port (cf. § 2.2) specified in the deployment definition D of the same service in which
the behaviour is defined. Output port OP will contain the information (e.g., a URL)
for contacting the target service. Finally, (input choice) implements input-guarded
choice. Namely, it supports the receiving of a message for any of the operations in
the inputs in the choice. When a message for an input ηi can be received, then all
the other branches are deactivated and ηi is executed. Afterwards, the related branch
behaviour Bi is also executed. A static check enforces all the ηi in an input choice
to have different operations, so to avoid ambiguity.
Statement compositions. Rules (cond) and (while) implement the standard condi-
tional and iteration constructs. In (cond), the else block is optional (denoted by its
enclosure in square brackets). Rule (seq) enables the sequential composition of be-
haviours: B is executed, waited for termination, and then B′ is executed. Rule (par)
runs B and B′ in parallel. The sequential operator ; binds tighter than the parallel
operator |. Operator precedence can be overridden using the (block) construct.
Assignments and empty behaviour. Rule (assign) evaluates expression e and as-
signs its value to variable x. Term nullProcess denotes the empty behaviour.

Remark 1 (Sequence-Parallel interaction). Despite its C/Java-like syntax, it is inter-
esting to observe that the constructs for behaviour composition in Jolie follow the
workflow tradition. For instance, it is easy to program the fork-join pattern, as in
{B1|B2} ; B3, which is not natively supported, e.g., by Java. ut

Example 1 (Store service). We give an implementation example of the behaviour
of a store service. The service allows for retrieving information about a product
(available quantity and price) and then placing an order for buying it.

getProductInfo(prod)(info) {
{ getQuantity@Warehouse(prod)(q) |

getPrice@PriceList(prod)(price)
}; info = "Price: " + price + "; Quantity: " + q

}; [order(orderDesc)] { / * h a n d l e o r d e r * / }
[cancel()] { nullProcess }

The behaviour starts with a request-response input on operation getProductInfo.
When it is invoked, its body is executed. First, the latter invokes services Warehouse
and PriceList to retrieve the information about the product. Then, it concatenates
a string with the retrieved information and stores it in variable info. After the body
is executed, the original invoker of getProductInfo is sent the content of vari-
able info. The behaviour now enters into a choice, waiting for an input from the

6 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

same invoker for either operation order or cancel. In the first case the behaviour
will handle the order, received on variable orderDesc (we leave the handling code
unspecified); instead, if cancel is invoked the behaviour simply terminates. ut

Handling data. Jolie supports classic basic data types such as integers, strings,
and booleans. More generally, variables and expressions can handle structured data
trees using a concise and powerful syntax.

The variable state of a Jolie program is organised as a data tree. A variable then
is simply a path for traversing the state and obtaining a subtree. Variables are dy-
namically allocated at runtime. It is easy to understand how this works by making a
comparison to XML trees 2. Consider the following behaviour:

x = 5 ; y = 10

Executing the code above would yield a state with two subnodes, x and y, respec-
tively containing the integers 5 and 10. An XML representation would be:

<state> <x>5</x> <y>10</y> </state>

Executing now the statement z = y / x would yield the following state:

<state> <x>5</x> <y>10</y> <z>2</z> </state>

State traversing is obtained through the dot operator ., which can be used to specify
paths. For instance, we can store information on a person:

Listing 1 A tree with personal information

person.name = "John"; person.age = 42;
person.contact.email = "john@smith.org";
person.contact.phoneNumber[0] = "123";
person.contact.phoneNumber[1] = "456"

The code above shows two features. The first is nesting: email is a subnode of
contact which is a subnode of person. The second is vectors, obtained with the
usual square bracket notation. An XML representation would be:

<state> <person> <name>John</name> <age>42</age> <contact>
<email>john@smith.org</email>
<phoneNumber>123</phoneNumber>
<phoneNumber>456</phoneNumber> </contact> </person> </state>

Jolie also comes with some native operators for manipulating data trees. In the
following we show the deep copy operator << and the vector size operator #. Assume
that the following code is run with the state represented above:

x << person.contact ; numbers = #x.phoneNumber

In the resulting state x would then contain a copy of the tree pointed by person.contact
and numbers the size of the vector phoneNumber inside that tree.

In the rest of the chapter, we will simply refer to paths as variables.

2 We observe, however, that Jolie trees are different from XML trees, as they are designed for
performance. For example, Jolie tree nodes store typed values (strings, integers, . . .), whereas
XML does not: all XML node values are strings, and their type is just an optional annotation.

Service-oriented programming with Jolie 7

2.2 Deploying services

We introduce now the syntax for deployment. The basic deployment primitives are
input ports and output ports, which support input and output communications with
other services. Ports are based on interfaces and data types.

A deployment D is simply a list of deployment instructions among which we can
have input and output ports, type definitions, and interfaces:

D ::= D D | IP | OP | Tdef | I | . . .

We leave this definition open with . . . as it will be extended in the next sections.
Communication ports. Communication ports define how communications with
other services are supported. There are two kinds of ports. Input ports deal with
exposing input operations to other services. Output ports, instead, define how to in-
voke the operations of other services. Input and output ports are dual concepts and
their syntaxes are quite similar. Ports are based upon the three fundamental concepts
of location, protocol and interface. The former two define the concrete binding in-
formation between a Jolie program and other services. The last, instead, defines
type information that is expected to be satisfied by the behaviour that uses the ports.

A location expresses the communication medium, along with its configuration
parameters, a service uses for exposing its interface (in the case of an input port) or
contacting another service (in the case of an output port). A protocol defines how
data to be sent or received should be, respectively, encoded or decoded following an
isomorphism. Finally, a port must specify the interface that is accessible through it.

The syntax for input and output ports is:

IP ::= inputPort id {

Location: URI
Protocol: p
Interfaces: iface1, . . . , ifacen
}

OP ::= outputPort id {

Location: URI
Protocol: p
Interfaces: iface1, . . . , ifacen
}

where URI is an URI (Uniform Resource Identifier), defining the location of the
port; id, p, and ifacei are identifiers representing, respectively, the name of the port,
the data protocol to use, and the interfaces accessible through the port.

A location must indicate the communication medium the port has to use and
its related parameters, in this form: medium [:parameters] , where medium
is a medium identifier and the optional parameters is a medium-specific string.
Jolie currently supports four mediums: btl2cap (Bluetooth L2CAP), localsocket
(Unix local sockets), rmi (Java RMI), and socket (TCP/IP sockets). An example
of a valid location is: "socket://www.mysite.com:80/", where socket is the
medium and the following part represents the parameters.

Protocols are referred by name. Examples of valid protocol names are http,
https, soap, sodep [11] (a binary protocol specifically developed for Jolie), and
xmlrpc. The HTTP protocol implementation, http, can dynamically detect client
invocations using different formats (e.g., GWT-RPC [4] and JSON [5]).

8 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

Data types and interfaces. Communication ports require interfaces to be defined.
An interface is a collection of operation types. The latter define the data types of the
values that can be communicated over each specified operation.

We start from data types. We remind that Jolie values are data trees. A data type
specifies (i) the structure of a data tree, (ii) the type of the content of its nodes, and
(iii) the allowed number of occurences of each node. Let us see an example first. We
write a type for the data tree pointed by person in Listing 1.

type Person:void { .name:string .age:int
.contact[0,1]:void

{ .email:string .phoneNumber*:string } }

A value of type Person must not contain anything in its root node (it is void). It
must have the subnodes name (which must contain a string) and age (an integer).
It may have a subnode contact (this is specified by the notation [0,1], to be read
as “from zero to one occurences”). If it does, subnode contact must not contain
anything in its root node (void), but it must have an email subnode and any number
of phoneNumber subnodes (specified by the * notation).

The syntax for data types Tdef is as follows:

Tdef ::= type id T
T ::= : BT [{ .id1 R1 T1idn Rn Tn }] | undefined
R ::= [min , max] | * | ? BT ::= int | string | void | . . .

Type definitions assign a type T to a name id. Each type T comprehends a basic
type BT and (optionally) a list of named subnode types or the undefined keyword,
which makes the type accepting any subtree. Each subtype comes with a range R,
which specifies the allowed number of occurences of the subnode in a value. A
range R can be an interval from min (an integer major or equal than zero) to max
(an integer major or equal than its associated min), or *, meaning any number of
occurences. ? is a shortcut for [0,1].

The syntax for interfaces I is:

I ::= interface id { [OneWay: OW+] [RequestResponse: RR+] }
OW ::= id(OT) RR ::= id(OTreq)(OTresp) OPT ::= BT | type

An interface I is a list of one-way and request-response operation declarations, re-
spectively OW and RR. OW maps an operation id to an operation type OT , which
can be either a basic type BT or a reference to a user-defined type. RR is similar,
but it distinguishes between the type for the request OTreq and the response OTresp.

Remarkably, it is possible to define multiple input ports that expose the same
interface through different communication technologies. This way, for example, a
Jolie program may expose the same set of functionalities through a web interface
and over Bluetooth, retaining simplicity in the behaviour.

Deployment introduces runtime type checking to behaviours. Whenever a mes-
sage is sent or received through a port, its type is checked against that specified for
its operation in the port’s interface. An invoker sending a message with a wrong
type receives a TypeMismatch fault. Also, an output statement may throw the same
fault when trying to send a message with wrong type.

Service-oriented programming with Jolie 9

2.3 Putting it all together

We can finally use the syntax shown so far to implement working Jolie programs,
defining their behavioural and deployment parts. The following examples are com-
plete, and therefore executable. The next listing defines a service that offers an op-
eration for performing the summation of some numbers.

type SumRequest:void { .number[2,*]:int }
interface SumInterface { RequestResponse: sum(SumRequest)(int) }
inputPort SumInput { Location: "socket://localhost:8000/"

Protocol: soap Interfaces: SumInterface }
main {

sum(req)(result) { i = 0;
while(i < #req.number) { result = result + req.number[i++] }

} }

The code above implements a service that exposes an operation sum that takes at
least two number nodes in its request message and then replies with the sum of the
numbers. The service is deployed accepting socket connections at TCP port 8000
and uses the soap protocol. Let us see a program that invokes the service above.
Below, we use the include primitive for importing the output port Console from
the Jolie standard library unit console.iol and print the result.

include "console.iol"
type SumRequest:void { .number[2,*]:int }
interface SumInterface { RequestResponse: sum(SumRequest)(int) }
outputPort SumServ { Location: "socket://localhost:8000/"

Protocol: soap Interfaces: SumInterface }
main {

request.number[0] = 3; request.number[1] = 5;
sum@SumServ(request)(response);
println@Console(response)() / * w i l l p r i n t 8 * / }

We can already see how the separation between behaviour and deployment helps
in addressing the heterogeneity of communication technologies. For example, if
we want to invoke our service from a web browser it is sufficient to change its
communication protocol to http, without considering the behaviour:

inputPort SumInput { Location: "socket://localhost:8000/"
Protocol: http Interfaces: SumInterface }

Now we can sum numbers from a web browser by opening a URL such as:

http://localhost:8000/sum?number=10&number=2&number=4

Remark 2 (Automatic Type Casting). In the example above, we pass some integer
parameters to our service through a query string in an HTTP URL, which does not
carry data typing. In this case, Jolie is actually casting such string parameters to
integers, referring to the operation type. Automatic type casting for untyped data
also allows for rejecting immediately messages with a wrong type. For example,
browsing the following URL would get and display a TypeMismatch error:

http://localhost:8000/sum?number=wrong ut

10 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

3 Sessions and error recovery

Until now we have presented services that run their behaviour only once. We also
never accounted for errors in their executions. However, in service-oriented comput-
ing, services should be available multiple times and engage in sessions, i.e. stateful
conversations with other entities with a shared goal. For example, a web browser, an
E-Commerce service, and a bank service may start a session to perform a payment.
Then, they would need to handle possible errors in such an activity. In this section,
we introduce the Jolie primitives for programming sessions and error recovery.

3.1 Behaviour instances

A service participates in a session by executing an instance of its behaviour. So far
we have executed behaviours a single time; e.g., the sum service in § 2.3 supports
a single session with a client for receiving some numbers and replying with their
summation. The service must be executed again manually if it is needed again.

Jolie allows to reuse behavioural definition multiple times with the execution
modality deployment primitive [31]:

D ::= . . . | execution { M } M ::= single | sequential | concurrent

single is the default execution modality (so the execution construct may be omit-
ted in this case), which runs the program behaviour once. sequential, instead,
causes the program behaviour to be made available again after the current instance
has terminated. This is useful, for instance, for modelling services that need to guar-
antee exclusive access to a resource. Finally, concurrent causes a program be-
haviour to be instantiated and executed whenever its first input statement can receive
a message. Jolie also supports special procedures for initialising a service before it
makes its behaviour available, omitted here. The interested reader may refer to [32].

In the sequential and concurrent cases, the behavioural definition inside the
main procedure must be an input statement (an input η or an input choice, cf. § 2,
Fig. 1); we refer to the operations in such an input statements as starting operation.
Variable state. A crucial aspect of behaviour instances is that each instance has
its own private state, determining variable scoping. This lifts programmers from
worrying about race conditions in most cases. For instance, we could simply add the
deployment instruction execution { concurrent } to the sum service in § 2.3 to
make it supporting multiple clients at the same time. Access to variables would be
safe since each behaviour instance would have its private state.

Jolie also provides global variables to support sharing of data among different
behaviour instances. These can be accessed using the global prefix:

global.myGlobalVariable = 3; / / G l oba l v a r i a b l e
myLocalVariable = 1 / / Loca l t o t h i s b e h a v i o u r i n s t a n c e

Service-oriented programming with Jolie 11

Concurrent access to global variables can be restricted through synchronized

blocks, similarly to Java: B ::= . . . | synchronized (id) { B } which allows
only one process at a time to enter any synchronized block sharing the same id.
Dynamic binding. Jolie allows output ports to be dynamically bound, i.e., their
locations and protocols (called binding information) can change at runtime. Changes
to the binding information of an output port is local to a behaviour instance: output
ports are considered part of the local state of each instance. Dynamic binding is
obtained by treating output ports as variables. For instance, the following would
print the location and protocol name of output port Printer

include "console.iol" include "Printer.iol"
outputPort Printer { Location: "socket://p:80/"

Protocol: sodep Interfaces: PrinterInterface }
main { println@Console(P.location)();

println@Console(P.protocol)() }

where the file Printer.iol contains the interface:

interface PrinterInterface { OneWay: printText(string) }

Binding information may be entered at runtime by making simple assignments:

include "Printer.iol"
outputPort P { Interfaces: PrinterInterface }
main { P.location = "socket://p:80/"; P.protocol = "sodep" }

Example 2 (Binding registry). We show a usage example of dynamic binding and
binding transmission by implementing a binding registry, i.e., a service that shares
binding information. The registry offers a request-response operation, getBinding,
that returns the binding information for contacting a service. We identify services
by simple names. The interface of the registry is thus:

interface RIf { RequestResponse: getBinding(string)(Binding) }

where Binding is the type of port bindings defined in the standard Jolie library.
Below we implement the registry behaviour, which supplies binding information
for an inkjet printer and a laser printer (whose services we leave unspecified).

main {
getBinding(name)(b) {

if (name == "LaserPrinter") {
b.location = "socket://p1.com:80/"; b.protocol = "sodep"

} else if (name == "InkJetPrinter") {
b.location = "socket://p2.it:80/"; b.protocol = "soap"

}
}}

Finally, we define a client that calls getBinding for discovering the laser printer:

outputPort Registry { / * o m i t t e d * / }
outputPort Printer { Interfaces: PrinterInterface }
main { getBinding@Registry("LaserPrinter")(Printer);

printText@Printer("My text") }

12 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

3.2 Message routing with Correlation Sets

Having multiple instances of a behaviour running in a service introduces the prob-
lem of routing incoming messages to the right instances. Let us clarify with an
example. Assume that an E-Commerce service has two behaviour instances opened
for buying two products, respectively product A and product B. If a message for per-
forming a payment comes from the network, how can we determine if the payment
is for A or it is for B? Supposedly, we should require that the payment message con-
tains some information that allows us to relate it to the correct behaviour instance,
e.g., a serial number. In common web application frameworks this issue is covered
by the sid session identifier, a unique key usually stored as a browser cookie.

Jolie supports incoming message routing to behaviour instances by means of cor-
relation sets [33]. Correlation sets are a generalisation of session identifiers: instead
of referring to a single variable for identifying behaviour instances, a correlation
set allows the programmer to refer to the combination of multiple variables, called
correlation variables. Correlation set programming deals both with the deployment
and behavioural parts. The former must declare the correlation sets, instructing the
interpreter on how to relate incoming messages to internal behaviour instances. The
latter instead has to assign the concrete values to the correlation variables.
Correlation set declaration. Correlation sets are declared in the deployment part
of a program using the following syntax:

D ::= . . . | C C ::= cset { C+
Var } CVar ::= x : Tpath

+

A correlation set declaration C is a list of correlation variable declarations. A cor-
relation variable declaration CVar links a correlation variable x to a list of aliases. A
correlation alias Tpath is a path (using the same syntax for variable paths) starting
with a message type name, indicating where the value for comparing the correlation
variable can be retrieved within the message. Aliases ensure loose coupling between
the names of the correlation variables and the data structures of incoming messages.

The fact that correlation aliases are defined on message types makes correlation
definitions statically strongly typed. A static checker verifies that each alias points to
a node that will surely be present in every incoming message of the referenced type;
technically, this means that the node itself and all its ancestor nodes are not optional
in the type. As an example, the following is an invalid correlation set definition:

type MyType:void { .a:int { .b?:string } }
cset { myVar: MyType.a.b }

because node b is optional under a in type MyType. Hereafter we refer to a path such
as a.b, i.e. the path that follows after the type name, as the aliasing path for the
correlation variable for the relative type (MyType above).

Jolie performs many other static checks for ensuring correctness of correlation
set declarations (see [33]). Here we highlight that, for services using sequential

or concurrent execution modalities, for each operation used in an input statement
in the behaviour there is exactly one correlation set that links all its variables to
the type of the operation. Since there is exactly one correlation set referring to an

Service-oriented programming with Jolie 13

operation, we can unambiguosly call it the correlation set for the operation. We can
now define how correlation works (see [33] for a formal definition).

Let o be an operation and C be the correlation set for o. We say that an incoming message
for o correlates with a behaviour instance if, for every variable x with y as aliasing path for
the input type of o in C, we have that the value of x in the state of the behaviour instance is
the same as the value of y in the message.

Whenever a service receives a message through an input port (and the message is
correctly typed wrt the port’s interface) there are three possibilities, defined below.

• The message correlates with a behaviour instance. In this case the message is
received and given to the behaviour instance, which will be able to consume it
through an input statement for the related operation of the message.

• The message does not correlate with any behaviour instance and its operation is
a starting operation in the behavioural definition. In this case, a new behaviour
instance is created and the message is assigned to it. If the starting operation has
an associated correlation set, all the correlation variables in the correlation set
are atomically assigned (from the values of the aliases in the message) to the
behaviour instance before starting its executing.

• The message does not correlate with any behaviour instance of its operation is
not a starting operation in the behavioural definition. In this case, the message is
rejected and a CorrelationError fault is sent back to the invoker.

Correlation values. In the behavioural part of a program, correlation variables must
be explicitly prefixed with the csets keyword. So, for instance, assigning the value
"MyValue" to the correlation variable myVar looks like:

csets.myVar = "MyValue"

It is often useful to assign a fresh value to a correlation variable, to ensure unambi-
guity between behaviour instances. The primitive new addresses this point:

csets.myVar = new

We observe that a programmer can make mistakes when programming correla-
tion. As an example, assume that in the following code snippet operation close (for
closing a behaviour instance) has input type CloseType:

cset { x: CloseType.closeIdentifier } main { open(); close() }

The code above is wrong because x is not instantiated before the input statement
close(). This would case a deadlock since no input message would be able to cor-
relate for that input. Jolie comes with a static checker that can detect some common
problems in correlation programming [33], such as this one.

Example 3 (Distributed authentication). We report an example from [33] inspired
by the OpenID Authentication specifications [10], a largely adopted decentralised
Single Sign-On protocol that allows a service, called relying party, to authenticate

14 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

a user, the client, by relying on another external service that is responsible for han-
dling identities, the identity provider. Therefore, OpenID specifies a multiparty ses-
sion. When the client requests access to the relying party, the latter starts an authen-
tication session with the identity provider and redirects the client to it. The client
then sends its authentication credentials to the identity provider, which will inform
the relying party on the result of the authentication attempt. The example can be
downloaded at [9]. Here, we show an implementation sketch for the relying party.

cset { clientToken: / * . . . * / }
cset { secureToken: AuthMessage.secureToken }
interface RelyingPartyInterface {
OneWay: authSucceeded(AuthMessage), authFailed(AuthMessage)
RequestResponse: login(LoginRequest)(Redirection) }
main {

login(loginRequest)(redirection) {
openRequest.clientToken = csets.clientToken = new;
openRequest.secureToken = csets.secureToken = new;
openRequest.relyingPartyIdentifier = MY_IDENTIFIER;
openAuth@IdentityProvider(openRequest);
/ * . . . b u i l d r e d i r e c t i o n message f o r c l i e n t . . . * /

}; [authSucceeded(message)] { / * . . . * / }
[authFailed(message)] { / * . . . * / } }

The service receives a request on the starting operation login from the client for
initiating the protocol. The body of login generates two fresh correlation tokens,
clientToken and secureToken, and also stores them under the openRequest

variable. We will use clientToken for receiving messages from the client and
secureToken for receiving messages from the identity provider. The client is not in-
formed about secureToken, preventing it to maliciously act as the identity provider.
The body of login performs a call to the identity provider, starting an authentica-
tion session and communicating secureToken. The reply will redirect the client to
the identity provider. The relying party will then wait for a notification about the
result of the authentication attempt, hence the input choice on authSucceeded and
authFailed, which correlate through secureToken. ut

3.3 Fault handling

Fault handling in Jolie involves four basic concepts: scope, fault, termination and
compensation. We now describe the first three concepts: the reader interested in
compensation handling can refer to [19]. A scope is a behaviour container denoted
by a unique name and able to manage faults. A fault is a signal raised by a behaviour
towards the enclosing scope when an error state is reached, in order to allow for its
recovery. Termination is a mechanism used to recover from errors: it is automatically
triggered when a scope is unexpectedly terminated from a parallel behaviour and
must be smoothly stopped. We say that a scope terminates successfully if it does not
raise any fault signal; a scope obtains this by handling all the faults thrown by its

Service-oriented programming with Jolie 15

internal behaviour. Recovery mechanisms are implemented by exploiting handlers,
which contain the code to execute when faults or terminations are triggered.

We extend the syntax of behaviours with the primitives for fault handling:

B ::= . . . | scope(s) { B } (scope)
| install(h1 => B1 , . . ., hn => Bn) (inst)
| cH (cH)
| throw(f [, x]) (throw)

Above, (scope) defines a scope with a unique scope name s and a behaviour B. (inst)
dynamically installs the handlers Bi for their respective names hi in the enclosing
scope, where h can be either a fault name or one of the special keywords this and
default. If it is a fault name, then the handler is installed as a fault handler; if it is
this, then the handler is installed as a termination handler for the enclosing scope;
if, finally, it is default, then the handler is installed as a fallback fault handler for
all faults that do not have a specific fault handler. Installing a handler overwrites the
previous one for the same fault or scope name; however, handlers can be composed
by using the cH placeholder, which is replaced by the code of the previously installed
handler. Finally, (throw) throws a fault f with some optional data x.
Automatic fault transmission. Uncaught fault signals in a request-response body
are automatically sent to the invoker. Hence, invokers are always notified of unhan-
dled faults. We update the syntax for request-response operation types (cf. § 2.2) to
declare the faults fi that could be sent back to invokers with data of type OTi:

RR ::= id(OTreq)(OTresp) [throws f1(OT1) . . . fn(OTn)]

It follows from the fact that request-response operations may return a fault, that now
the solicit-response output statement may throw the received fault.
Handler composition. The cH element allows for the dynamic composition of be-
havioural code. Consider the following example:

scope(s) { install(f => i = i+2); install(f => i++; cH) }

The second install uses cH in its handler. At runtime, cH will be replaced with the
previously installed handler. So the second install instruction is equivalent to:

install(f => i++; i = i + 2)

Install statement priority. An install statement may execute in parallel to other
behaviours that may throw a fault. This introduces a problem of nondeterminism:
how can the programmer ensure that the correct handlers are installed regardless of
the scheduling of the parallel activities? Jolie solves this issue by giving priority
to the install primitive wrt fault processing, making handler installation predictable.
As an example, consider the following code:

scope(s) { throw(f) | install(f => println@Console("Hi")()) }

where, inside the scope s, we have a parallel composition of a throw statement
for fault f and an installation of a handler for the same fault. The priority given to
the install primitive guarantees that the handler will be installed before the fault
signal for f reaches the scope construct and its handler is searched for.

16 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

4 Architectural composition

Until now we have shown how a behaviour can compose other behaviours abstract-
ing from its deployment. In this section we show how composition can be obtained
from the opposite perspective. Namely, we present architectural composition, a dif-
ferent kind of composition that a deployment definition can obtain abstracting from
the specific behavioural definitions of the involved services.

Architectural composition can be roughly divided in two main categories. The
first deals with the structuring of the execution contexts in which services oper-
ate. For instance, a service may execute other sub-services in the same execution
engine, in order to gain advantages in terms of resource control. Other examples
can be the wrapping and hiding of an entity in an SOA. The second category deals
with the topology of the connections between services in an SOA. Jolie supports
mechanisms for both categories [22, 32]. Here we introduce two representatives,
respectively embedding [32] and aggregation [32, 36].

4.1 Embedding

Embedding is a mechanism for executing multiple services in the same virtual ma-
chine. A service, called embedder, can embed another service, called embedded
service, by targetting it with the embedded primitive. The syntax for embedding is:

D ::= . . . | E
E ::= embedded { Etype : path [in OP] } Etype ::= Jolie | Java | JavaScript

where E is the embedding construct, Etype specifies the type (technology) of the ser-
vice to embed, and path is a URL (possibly in simple form) pointing to the definition
of the service to embed. Jolie currently supports the embedding of Jolie, Java, and
JavaScript service definitions; this support can be modularly extended [32]. Embed-
ding may optionally specify an output port OP; in this case, as soon as the service
is loaded, the output port OP is bound to the “local” communication input port of
the embedded service. The meaning of local communication input port is dependent
on the embedding type; we will show examples for Jolie and Java services. This
makes embedding a cross-technology mechanism: it can load services defined using
different languages. Embedding produces a hierarchy of services where the embed-
der is the parent service of the embedded ones; this hierarchy handles termination:
whenever a service terminates all its embedded services are recursively terminated.
The hierarchy is also useful for enhancing performance: services in the same virtual
machines may communicate using fast local memory communication channels.

When embedding a Jolie service, the path URL must point to a file containing a
Jolie program (provided as source code or in binary form). Command line param-
eters can also be passed. Local in-memory communication between embedder and
embedded is enabled by means of the local communication medium, which must
be specified by the embedded service. In this case no protocol definition is needed.

Service-oriented programming with Jolie 17

Example 4 (Embedded Jolie service). We embed the sum service from § 2.3. First,
we add the following input port to allow for local communications:

inputPort LocalIn { Location: "local" Interfaces: SumInterface }

Now we can design a modified version of the client program in § 2.3 to embed the
sum service (whose definition we assume to be stored in file sum_service.ol) and
call it using an output port bound by embedding. We omit interfaces.

outputPort SumService { Interfaces: SumInterface }
embedded { Jolie: "sum_service.ol" in SumService }
main { request.number[0] = 3; request.number[1] = 5;

sum@SumService(request)(response) }

ut

When embedding a Java service, the path URL must unambiguously identify
a Java class, which can also be in the Java classpath of the Jolie interpreter. The
class must extend the JavaService abstract class, offered by the Jolie Java library
for supporting the automatic conversion between Java values and their Jolie rep-
resentations. Each method of the embedded class is seen as an operation from the
embedder, which will instantiate an object using the class and bind it to the out-
put port. Embedding Java services is particularly useful for interacting with existing
Java code, or perform some task where computational performance is important.
Many services of the Jolie standard library (like Console) are Java services.

Example 5 (Java service embedding). We embed a simple Java service that offers a
length Request-Response operation that takes a string as request and replies with
the length of the string. Consider the following Java code:

package example; import jolie.runtime.JavaService;
public class MyService extends JavaService {

public Integer length(String request)
{ return request.length(); } }

We can embed and use the code above from a Jolie program such as the following:

interface MyServiceIface { RequestResponse: length(string)(int) }
outputPort MyService { Interfaces: MyServiceIface }
embedded { Java: "example.MyService" in MyService }
main { length@MyService("Hi")(l) }

ut

We end our presentation of embedding by showing how to use it at runtime.
Dynamic embedding can be used to implement features such as code mobility (an
important aspect in cloud computing middleware) and service adaptation.

Example 6 (Platform-as-a-service). We report a sketch, from [32], of a simple
platform-as-a-service solution, where customers can load services by service mobil-
ity. Each customer has a certain amount of allowed execution time: a loaded service

18 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

cannot run for more than the customer’s allowed time, and when the service termi-
nates the allowed time is decreased. We use the MetaService service from the Jolie
standard library, which can dynamically embed and unload services respectively
through the loadEmbeddedService and unloadEmbeddedService operations.

execution { concurrent } csets { sid: / * . . . * / }
main {

login(l)(csets.sid)
{ auth@AccountManager(l)(account); csets.sid = new };

startService(s)() { loadEmbeddedService@MetaService(s)();
setNextTimeout@Time(account.allowedTime) };

[timeout()] { nullProcess } [stop(sid)] { nullProcess };
{ unloadEmbeddedService@MetaService(s.resourceName)() |

updateAllowedTime@AccountManager(account)() } }

The service supports multiple sessions (execution{concurrent}). First, the cus-
tomer is required to login, creating a behaviour instance. An AccountManager ser-
vice is composed for handling authentication; if auth fails, we rely on automatic
fault transmission (cf. § 3.3) to send the fault to the customer through login. In
auth succeeds, we assign a fresh token to the correlation variable sid and send it
back to the customer. The startService operation is then made available, which
can be called to start a new service; the latter is loaded by composing MetaService.
After the service is embedded, a Time service is used to start a timer set to the cus-
tomer’s allowed time. The timer is used in the following input choice, where either
the timeout occurs or the stop operation gets called first. In any case the service
gets unloaded and, concurrently, the account allowed time gets updated. ut

4.2 Aggregation

Aggregation is a generalisation of network proxies that allows a service to expose
operations without implementing them in its behaviour, but instead delegating them
to other services. Aggregation can also be used for programming various architec-
tural patterns – such as load balancers, reverse proxies, and adapters – omitted here
(see [32, 36]). The syntax for aggregation extends that for input ports:

IP ::= inputPort id { Location: URI Protocol: p
Interfaces: iface1, . . . , ifacen [Aggregates: OP+] }

by introducing the Aggregates primitive, which expects a of output port names.
The interfaces of the output ports must not share any operation name. We can now
define how aggregation works. Let IP be an input port. Whenever a message for
operation o is received through IP we have the three following possibilities.

• o is an operation declared in one of the interfaces of IP. In this case, the message
is normally received by the program as described in § 3.2.

• o is not declared in one of the interfaces of IP and is declared in the interface of
an output port OP aggregated by IP. In this case, the message is forwarded to OP
as an output from the aggregator.

Service-oriented programming with Jolie 19

• o is not declared in any interface of IP or of its aggregated output ports. Then,
the message is rejected and an IOException fault is sent to the caller.

From the second item above, we can observe that aggregation merges the interfaces
of the aggregated output ports and makes them accessible through a single input
port. Thus, an invoker would see all the aggregated services as a single one.

Remarkably, aggregation handles the request-response pattern seamlessly: when
forwarding a request-response invocation to an aggregated service, the aggregator
will automatically also take care of relaying the response to the original invoker.

Example 7 (Forwarder). Aggregation can be used for system integration, e.g. bridg-
ing services that use different communication technologies or protocols [32]. The
deployment snippet below creates a service that forwards incoming SODEP calls on
TCP port 8000 to the output port MyOP, converting the received messages to SOAP.

outputPort MyOP { Location: "socket://someurl.ex:80/"
Protocol: soap Interfaces: MyIface }

inputPort MyInput { Location: "socket://localhost:8000/"
Protocol: sodep Aggregates: MyOP }

ut

Example 8 (Aggregation and embedding). We give an example where three services
– A, B, and C – are aggregated by a service M, which also embeds C. The code
follows, where we have an output port for each service with the same name:

outputPort A { Location: "socket://someurlA.com:80/"
Protocol: soap Interfaces: InterfaceA }

outputPort B { Location: "socket://someurlC.com:80/"
Protocol: xmlrpc Interfaces: InterfaceB }

outputPort C { Interfaces: InterfaceC }
embedded { Java: "example.serviceB" in B }
inputPort M { Location: "socket://urlM.com:8000/"

Protocol: sodep Aggregates: A, B, C }

Observe that the code for aggregating service C abstracts from the fact that it is
actually embedded and not external; this abstraction is given by using output ports
for aggregating, creating a dependency only on the interface instead of the imple-
mentation and location of the target service. The obtained architecture is graphically
represented in Fig. 2, where we assume that the aggregated interfaces are singletons.
The grey arrows represent how the messages will be forwarded. E.g., an incoming
message for operation op3 will be forwarded to the embedded service C. ut

5 Example: an automotive case study

We present a Jolie implementation of the automotive case study in the EU project
SENSORIA [38]. We describe the main aspects of the implementation. A complete
description and executable source code can be found at [1].

20 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

Fig. 2 The aggregator M
exposes the union of all the
interfaces of the services it
aggregates (A, B, C). Service
C executes inside the virtual
machine of M, by embedding.
Interfaces are represented
with dotted rectangles.

Fig. 3 (Local assistant retrieval). The
car service C calls the assistance ser-
vice A (1), which selects the appropri-
ate local assistance code LA (2) and
sends it back to C (3). C can now dy-
namically embed and run LA (4).

Fig. 4 (Payment workflow). The local assistant LA inside
the car service C calls the garage G (1), which opens a bank
transaction T inside its bank BG (2) and obtains a transac-
tion identifier (3), forwarded to LA (4). LA then asks C to
send the identifier to the user’s bank BU (5), which finally
closes the money transfer correlating with T (6).

In the automotive case study a car experiments a failure during a travel. An on-
board computer helps the driver in finding and booking some services for handling
the situation: a garage for receiving the car, a tow truck for towing the car to the
garage, and a car rental for renting a replacement car. We describe the execution
flow of the system. All entities are coded in Jolie, unless otherwise stated.
Getting assistance after a failure. When the Jolie program running in the car on-
board computer (called car service) detects a failure, it sends the failure description
to the assistance service of the car manufacturer. The latter analyses the descrip-
tion and sends back to the car service a Jolie program, called local assistant, that
is specific for the kind of failure. The car service now dynamically embeds the lo-
cal assistant (similarly to Example 6), and starts interacting with it. Both the car
service and the local assistant implement predefined static interfaces that define the
operations they will use to interact. The mechanism is depicted in Fig. 3.
Local assistant behaviour. The behaviour of the local assistant depends on the kind
of failure. For instance, we distinguish between failures that make the car unable to
move or not. Here we describe only the case in which the car is unable to move,
where we need to find a garage, a tow truck, and a car rental to handle the situation.
First, the local assistant asks the car service for the GPS coordinates of the car. The
car service actually aggregates a secondary service, the sensors service, for making
some read-only instrumentation data transparently available to the local assistant.

Service-oriented programming with Jolie 21

Then, it will use such information for building an ordered list of suitable garage, tow
truck, and car rental services, which are dynamically discovered through a registry
provided on the public network. The assistant asks now the car service to display the
list to the user, which also contains price information. The list is shown through an
embedded Java User Interface. The assistant is then notified of the user’s selection.
Bookings and payments. The local assistant has now to book and pay for the se-
lected garage, tow truck, and car rental services. For each service, we perform the
booking and then the payment. Here we exploit dynamic fault handling for ele-
gantly adapting our error recovery strategy based on the reached point of execution.
Consider for instance the following (simplified) code sketch:

scope(s) { book@Garage(gb)(gr);
install(default => cancelBook@Garage(gr));
pay@Bank(gr)(gp);
install(default => cH | cancelPay@Bank(gp));
book@TowTruck(tb)(tr);
install(default => cH | cancelBook@TowTruck(tr));
/ * . . . * / }

Above, scope s takes care of the bookings and payments. Whenever one of those
is successfully carried out, we update the fault handler for the scope by adding the
code for reverting it (in parallel, for efficiency). So, for example, if the booking of
the tow truck fails we would revert both booking and payment for the garage.
Bank transactions. There are different bank services that could be involved in the
payments. Here we describe the case for garage payment, depicted in Fig. 4. Let us
call BU the bank service handling the user’s bank account and BG the bank service
handling the bank account of the garage. When the local assistant books the garage,
the latter opens a behaviour instance in BG for handling the bank transaction, gets
back a transaction identifier (which is a correlation value for the behaviour instance
in BG) and returns it to the assistant. The assistant now delegates the payment to the
car service, which handles the user’s private data. In order to perform the payment,
the car service contacts BU passing the user’s account data, the binding information
to BG, and the transaction identifier. BU can now close the transaction by contacting
BG, using the binding information for reaching its input port and the transaction
identifier for correlating with the right behaviour instance. All the provided bank
implementations use SQL-based DBMSs through the Jolie standard library.

6 Related Work

Related work can be found in orchestration languages and integration middleware
for SOAs. Our deployment language allows Jolie to apply the service-oriented
paradigm also to other domains; here we briefly consider the programming of web
applications. Table 1 gives a systematic overview of our discussion.

WS-BPEL [35] is the reference orchestration language for Web Services. Jolie
takes inspiration from concepts present in WS-BPEL and WSDL, such as one-way

22 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

Name \Feature Behavioural
Composition

Termination
Handling

Architectural
Composition

Formal
Specifications

Web
Development

Jolie Yes
Yes

(Dynamic) Yes Yes Yes

WS-BPEL Yes
Yes

(Static) No No No

Orc Yes No No Yes No
ESB No No Yes No No

Web Frameworks No No No No Yes

Table 1 Comparison of natively supported features in Jolie and related technologies.

and request-response operations, communication ports, correlation sets, and termi-
nation handling. Nevertheless, Jolie significantly extends them. For instance, (i)
we have developed static analysis techniques for correlation-based message deliv-
ery [33], and (ii) in Jolie we consider dynamic handler installation to guarantee the
execution of the right fault recovery policy [19]. Another significant difference is
that Jolie uses a programmer-friendly C/Java-like syntax instead of the XML-based
syntax of WS-BPEL; although some of our examples (e.g., Example 1) may be en-
coded as WS-BPEL programs, the latter would be much longer and complex due to
the verbose XML syntax and additional declarative parts. Furthermore, WS-BPEL
does not come with formal semantics, making it ambiguous in some cases and lead-
ing to different execution behaviour in different implementations [30]. Jolie, on the
other hand, is a formally specified language (see § 7) and offers a reference im-
plementation. Some other orchestration languages in the literature come equipped
with a formal semantics. Blite [30] is a language that formally captures a subset
of WS-BPEL. Differently from Jolie, Blite does not have its own interpreter but
compiles its programs to WS-BPEL. HomeBPEL [15] is an extension of WS-BPEL
for handling stateful code mobility. Differently, Jolie supports stateless service mo-
bility through dynamic embedding (state mobility can be obtained, but it must be
coded manually by the programmer). PiDuce [16] is an implementation of a pi-like
process language equipped with powerful pattern-based primitives used to decon-
struct XML documents. Finally, Orc [26] is an orchestration language that follows a
data-flow oriented approach. The pruning operator found in Orc elegantly captures
the “speculative parallelism” pattern, which invokes several services in parallel and
considers only the first reply. An initial study of how this can be obtained in Jolie is
presented in [37].

We now move to integration middlewares for SOAs, which cover architectural
composition. In this context the Enterprise Application Integration (EAI) frame-
work [39] is often used, along with the Enterprise Service Bus (ESB) model [18].
These solutions cover a similar role to that of aggregation, as reported in [36] (where
a more powerful version of aggregation is also presented). Embedding, on the other
hand, is usually supported through specific application servers which can, in prac-
tice, be difficult to compose. In Jolie, instead, embedder services can be seamlessly
re-embedded by others to form a hierarchy. Finally, differently from our approach

Service-oriented programming with Jolie 23

all these tools are specific to some application domain (e.g., Web Services) and are
thus less general.

Jolie can be used as a self-contained web server through its http protocol [8],
making it an alternative to other web server technologies (e.g., Apache Tomcat) and
programming frameworks (e.g. PHP, JSP, Ruby on Rails). Noteworthingly, Jolie
natively supports structured behaviours and multiparty sessions (cf. § 3, Example 3),
which are usually encoded manually with bookkeeping code in web applications.

7 Conclusions

We have introduced Jolie, a programming language that synthesises a coherent pro-
gramming paradigm from the technologies and practices that emerged in service-
oriented computing in the recent years. It deals with both the heterogeneity of
communication technologies and that of composition mechanisms. We addressed
the former by separating the behavioural and deployment definitions of Jolie pro-
grams and reducing their coupling to communication ports. We covered composition
mechanisms by offering behavioural composition primitives for managing complex
workflows and more high-level architectural primitives that build system topologies.

Jolie comes with formal specifications (in terms of a process calculus) of its se-
mantics, omitted in this chapter [20, 21, 32]. This formal approach has been instru-
mental for reasoning on the underlying model of many constructs of the language.
For instance, correlation sets and their properties are formalised in [33]. Dynamic
fault handling has been developed purposefully for Jolie; its formalisation is re-
ported in [19]. A formal account of aggregation can be found in [36].

Jolie has also been a source of inspiration for other work. For example, dynamic
fault handling has been proven to be more expressive than classic static fault han-
dling [29]. [34] reports some programming patterns for component-based systems
that can be implemented in Jolie [32]. [22] presents some engineering concepts that
have been generalised from practical experience in Jolie programming.
Applications. The design of Jolie has been validated (and influenced) by cover-
ing a broad spectrum of applications, from low-level software tightly combined
with hardware to enterprise SOAs. Jorba [27] is a framework for context-aware dis-
tributed applications, based on dynamic embedding. Leonardo [8] is a Web Server
written in pure Jolie. Vision [12] is a push-enabled peer-to-peer application for shar-
ing slides during presentations. [13] presents a distributed architecture for the man-
agement of virtual machines written in Jolie. Jolie is also used in industrial devel-
opment. SAP Connector is a tool for the seamless integration of SAP ECC instal-
lations with Jolie programs; it exploits the Jolie deployment language to integrate
with numerous third-party information systems. Web Catalogue is an enterprise cat-
alogue with web and smartphone frontends, based on Leonardo. Central Watcher is
a software for managing and monitoring phone centrals, which uses embedding to
integrate with native hardware management libraries. SAP Connector, Web Cata-
logue, and Central Watcher are some of the proprietary products of italianaSoftware

24 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro

s.r.l. [24], a software development company that uses Jolie as main development
language and contributes to its code base regularly. A survey of the performance
of the Jolie interpreter goes out of the scope of this chapter (which concentrates on
the language). Roughly, it can be outlined as appropriate for many industrial deploy-
ments. For instance, stable deployments of SAP Connector have processed hundreds
of thousands of transactions. Or, Web Catalogue uses embedding and aggregation
heavily to compose a system of more than 30 SOAs, and a set of about 400 services
dynamically run for various tasks; e.g., user access, pictures, news, and localisation
are all handled by different inner SOAs.
Tool support. Jolie comes with many supporting tools (see [6]). Examples are:
joliedoc, a documentation generator; jolie2dummy, a tool for the quick prototyping
of Jolie code with “dummy” data generated from an interface; jolie2java, a con-
verter from Jolie data types to Java class definitions; jolie2wsdl, which generates
WSDL [42] documents from Jolie interfaces; vice versa, wsdl2jolie generates a
Jolie output port for calling a Web Service from its WSDL descriptor. Joliepse is a
prototype IDE for Jolie. jEye [25] is a graphical editor for Jolie programs. Finally,
QtJolie is a C++ integration library for Jolie services, developed in the KDE SC [7].
Future Work. We plan to implement a type system for dynamic binding to guaran-
tee that output ports are always bound to the expected interfaces. A similar study is
planned for dynamic embedding. Another future work is to develop a static analysis
for verifying the absence of “dangling bindings”, i.e., a service should never bind
an output port to a location where there is no available service.

We will investigate how Jolie can be combined with techniques for the specifi-
cation of protocols such as those based on session types, contracts, and choreogra-
phies [23, 17, 28]. Our aim is to produce tools for supporting the verification and
sound implementation of SOAs wrt global descriptions of system behaviour. The
granularity introduced by embedding in SOAs make it interesting to consider analy-
sis techniques where services can play multiple roles, like [14]. More generally, we
intend to explore how the architectural primitives of Jolie may influence the design
of protocol specification languages, e.g. by considering network topologies.

References

1. Automotive example. http://www.jolie-lang.org/files/ws handbook2012/automotive.zip.
2. D-Bus website. http://www.freedesktop.org/wiki/Software/dbus/.
3. GNOME. http://www.gnome.org/.
4. Google Web Toolkit. http://code.google.com/webtoolkit/.
5. JavaScript Object Notation. http://www.json.org/.
6. Jolie website. http://www.jolie-lang.org/.
7. K Desktop Environment. http://www.kde.org/.
8. Leonardo Web Server. http://www.sourceforge.net/projects/leonardo/.
9. OpenID implementation. http://www.jolie-lang.org/files/ws handbook2012/openid.zip.

10. OpenID Specifications. http://openid.net/developers/specs/.
11. SODEP protocol. http://www.jolie-lang.org/wiki.php?page=Sodep.
12. Vision framework. https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/playground/.

Service-oriented programming with Jolie 25

13. P. Anedda, M. Gaggero, S. Manca, O. Schiaratura, S. Leo, F. Montesi, and G. Zanetti. A
general service oriented approach for managing virtual machines allocation. In Proceedings
of ACM Symposium on Applied Computing (SAC), 2009, pages 2154–2161, 2009.

14. Pedro Baltazar, Luı́s Caires, Vasco T. Vasconcelos, and Hugo T. Vieira. A Type System for
Flexible Role Assignment in Multiparty Communicating Systems. In TGC, 2012. To appear.

15. Mikkel Bundgaard, Arne J. Glenstrup, Thomas T. Hildebrandt, Espen Højsgaard, and Hen-
ning Niss. Formalizing Higher-Order Mobile Embedded Business Processes with Binding
Bigraphs. In Proceedings of COORDINATION 2008, pages 83–99, 2008.

16. Samuele Carpineti, Cosimo Laneve, and Luca Padovani. Piduce - a project for experimenting
web services technologies. Sci. Comput. Program., 74(10):777–811, 2009.

17. Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for Web services.
ACM Trans. Program. Lang. Syst., 31(5), 2009.

18. David A. Chappell. Enterprise Service Bus - Theory in practice. O’Reilly, 2004.
19. C. Guidi, I. Lanese, F. Montesi, and G. Zavattaro. Dynamic Error Handling in Service Oriented

Applications. Fundamenta Informaticae, 95(1):73–102, 2009.
20. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A Calculus for Service

Oriented Computing. In Proceedings of ICSOC 2006, pages 327–338, 2006.
21. Claudio Guidi. Formalizing languages for Service Oriented Computing. PhD. thesis, Univer-

sity of Bologna, 2007. http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf.
22. Claudio Guidi and Fabrizio Montesi. Reasoning About a Service-oriented Programming

Paradigm. In Proceedings of YR-SOC 2009, pages 67–81, 2009.
23. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In Proceed-

ings of POPL’08, volume 43(1), pages 273–284. ACM Press, 2008.
24. italianaSoftware s.r.l. italianaSoftware. http://www.italianasoftware.com/.
25. jEye. A graphical designer for Jolie. http://sourceforge.net/projects/jeye/.
26. David Kitchin, Adrian Quark, William R. Cook, and Jayadev Misra. The Orc programming

language. In Proceedings of FMOODS/FORTE 2009, pages 1–25, 2009.
27. Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi. A framework for rule-based dy-

namic adaptation. In Proceedings of TGC, pages 284–300, 2010.
28. Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. Bridging the gap

between interaction- and process-oriented choreographies. In SEFM, pages 323–332, 2008.
29. Ivan Lanese, Cátia Vaz, and Carla Ferreira. On the expressive power of primitives for com-

pensation handling. In ESOP, pages 366–386, 2010.
30. Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. Using formal methods to de-

velop ws-bpel applications. Sci. Comput. Program., 77(3):189–213, 2012.
31. F. Montesi, C. Guidi, and G. Zavattaro. Composing Services with JOLIE. In Proceedings of

ECOWS 2007, pages 13–22, 2007.
32. Fabrizio Montesi. Jolie: a Service-oriented Programming Language. Master’s thesis, Univer-

sity of Bologna, Department of Computer Science, 2010.
33. Fabrizio Montesi and Marco Carbone. Programming services with correlation sets. In ICSOC,

pages 125–141, 2011.
34. Fabrizio Montesi and Davide Sangiorgi. A model of evolvable components. In Proceedings

of Fifth Symposium on Trustworthy Global Computing (TGC 2010), 2010.
35. OASIS. WS-BPEL Version 2.0. http://docs.oasis-open.org/wsbpel/.
36. Mila Dalla Preda, Maurizio Gabbrielli, Claudio Guidi, Jacopo Mauro, and Fabrizio Montesi.

Interface-based service composition with aggregation. In ESOCC, pages 48–63, 2012.
37. Mila Dalla Preda, Maurizio Gabbrielli, Ivan Lanese, Jacopo Mauro, and Gianluigi Zavattaro.

Graceful interruption of request-response service interactions. In ICSOC, pages 590–600,
2011.

38. SENSORIA. Software Engineering for Service-Oriented Overlay Computers. http://www.
sensoria-ist.eu/.

39. Mostafa Hashem Sherif. Handbook of Enterprise Integration. Auerbach Publishers, Incorpo-
rated, 2009.

40. W3C. SOAP Specifications. http://www.w3.org/TR/soap/.
41. W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch/.
42. W3C. Web Services Description Language. http://www.w3.org/TR/wsdl.

