Multiparty Session Types

as

Coherence Proofs

Fabrizio Montesi2

Joint work with

Marco Carbone1 Carsten Schürmann1
Nobuko Yoshida3

1IT University of Copenhagen
2University of Southern Denmark
3Imperial College London
A Curry-Howard correspondence between Multiparty Session Types and Linear Logic.
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]

Curry-Howard correspondence! [Caires and Pfenning, 10] [Wadler, 12]
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
 - Composition of proofs via duality of propositions
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
 - Composition of proofs via duality of propositions
- Session Types [Honda, 93]
Linear Logic [Girard, 87]
- Linear usage of propositions
- Composition of proofs via duality of propositions

Session Types [Honda, 93]
- Linear usage of I/O actions on channels
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
 - Composition of proofs via duality of propositions
- Session Types [Honda, 93]
 - Linear usage of I/O actions on channels
 - Composition of processes via duality of types
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
 - Composition of proofs via duality of propositions

- Session Types [Honda, 93]
 - Linear usage of I/O actions on channels
 - Composition of processes via duality of types

- Curry-Howard correspondence!
 [Caires and Pfenning, 10] [Wadler, 12]
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
 - Composition of proofs via duality of propositions
- Session Types [Honda, 93]
 - Linear usage of I/O actions on channels
 - Composition of processes via duality of types
- Curry-Howard correspondence!
 [Caires and Pfenning, 10] [Wadler, 12]
 - Proofs as Processes
From Linear Logic to Session Types, and back again

- Linear Logic [Girard, 87]
 - Linear usage of propositions
 - Composition of proofs via duality of propositions
- Session Types [Honda, 93]
 - Linear usage of I/O actions on channels
 - Composition of processes via duality of types
- Curry-Howard correspondence!
 [Caires and Pfenning, 10] [Wadler, 12]
 - Proofs as Processes
 - Propositions as Session Types
Proofs
Propositions

\[\vdash \Delta \]

where \(\Delta = A_1, \ldots, A_n \)
Classical Processes (CP) [Wadler, 12]

- Proofs as Processes
- Propositions as Session Types

\[
\vdash P \mid \Delta
\]

where \(\Delta = x_1 : A_1, \ldots, x_n : A_n \)

Read “Process \(P \) uses each channel \(x_i \) following protocol \(A_i \)”
Some rules (adapted from [Wadler, 12])
Some rules (adapted from [Wadler, 12])

\[
\frac{R \vdash \Sigma, y : A, x : B}{\overline{x} \ (y); \ R \vdash \Sigma, x : A \otimes \ B}
\]
Some rules (adapted from [Wadler, 12])

\[
\frac{P \vdash \Gamma, y:A}{x(y); (P \mid Q) \vdash \Gamma, \Delta, x:A \otimes B}
\quad \frac{Q \vdash \Delta, x:B}{x(y); (P \mid Q) \vdash \Gamma, \Delta, x:A \otimes B}
\]

\[
\frac{R \vdash \Sigma, y:A, x:B}{\bar{x}(y); R \vdash \Sigma, x:A \otimes B}
\quad \frac{R \vdash \Sigma, y:A, x:B}{\bar{x}(y); R \vdash \Sigma, x:A \otimes B}
\]
Some rules (adapted from [Wadler, 12])

\[
\frac{P \vdash \Gamma, y : A \quad Q \vdash \Delta, x : B}{x \,(y); \,(P \mid Q) \vdash \Gamma, \Delta, x : A \otimes B}
\quad \otimes
\]

\[
\frac{R \vdash \Sigma, y : A, x : B}{\overline{x} \,(y); \,R \vdash \Sigma, x : A \oslash B}
\quad \oslash
\]

\[
\frac{P \vdash \Gamma, x : A \quad Q \vdash \Delta, x : A^\perp}{(\nu x : A) \,(P \mid Q) \vdash \Gamma, \Delta}
\quad \text{Cut}
\]

where \(A^\perp \) is the “dual” of \(A \), e.g., \((A \otimes B)^\perp = A^\perp \oslash B^\perp\).
An example
An example

\[
\begin{align*}
P & \vdash \Gamma, y : A \\
Q & \vdash \Delta, x : B \\
\hline
x (y); (P \mid Q) & \vdash \Gamma, \Delta, x : A \otimes B
\end{align*}
\]
An example

\[
\begin{align*}
\frac{P \vdash \Gamma, y:A \quad Q \vdash \Delta, x:B}{x(y); (P \mid Q) \vdash \Gamma, \Delta, x:A \otimes B} \otimes \\
\frac{R \vdash \Sigma, x:A^\perp, y:B^\perp}{\bar{x}(y); R \vdash \Sigma, x:A^\perp \otimes B^\perp}
\end{align*}
\]
An example

\[
\begin{align*}
\frac{P \vdash \Gamma, y:A}{x(y); (P \mid \neg P) \vdash \Gamma, \Delta, x:A \otimes B} & \otimes \\
\frac{Q \vdash \Delta, x:B}{x(y); (P \mid \neg P) \vdash \Gamma, \Delta, x:A \otimes B} & \otimes \\
\frac{R \vdash \Sigma, y:A^\perp, x:B^\perp}{\bar{x}(y); R \vdash \Sigma, x:A^\perp \& B^\perp} & \otimes \\
\frac{(\nu x : A \otimes B) (x(y); (P \mid \neg P) | \Sigma)}{\bar{x}(y); R \vdash \Gamma, \Delta, \Sigma} & \otimes \\
\end{align*}
\]

because \((A \otimes B)^\perp = A^\perp \& B^\perp\).
Cut Elimination

In linear logic, cuts can always be eliminated from proofs.
Cut Elimination

\[
\begin{align*}
P \vdash & \quad \Gamma, y : A \\
Q \vdash & \quad \Delta, x : B \\
\overline{x} \ (y); \ (P \ | \ Q) \vdash & \quad \Gamma, \Delta, x : A \otimes B \\
\nu x \ (x \ (y); \ (P \ | \ Q)) \ | \ \overline{x} \ (y); \ R \vdash & \quad \Gamma, \Delta, \Sigma
\end{align*}
\]
Cut Elimination

\[
\begin{align*}
P \vdash \Gamma, y : A & \quad Q \vdash \Delta, x : B \\
\vdash \Gamma, \Delta, x : A \otimes B & \quad R \vdash \Sigma, y : A^\perp, x : B^\perp \\
(\nu x) (x (y); (P \mid Q)) & \quad \overline{x} (y); R \vdash \Sigma, x : A^\perp \otimes B^\perp \\
& \vdash \Gamma, \Delta, \Sigma
\end{align*}
\]

\$\times\$, \$\otimes\$
Cut Elimination

\[
\frac{\vdash \Gamma, y:A \quad \vdash \Delta, x:B}{\vdash \Gamma, \Delta, x:A \otimes B} \otimes \quad \frac{\vdash \Sigma, y:A^\perp, x:B^\perp}{\vdash \Sigma, x:A^\perp \otimes B^\perp} \quad \text{Cut}
\]

\[
\downarrow
\]

\[
\vdash \Delta, x:B
\]
Cut Elimination

\[
\frac{P \vdash \Gamma, y:A \quad Q \vdash \Delta, x:B}{x(y); (P \mid Q) \vdash \Gamma, \Delta, x:A \otimes B} \quad \otimes \quad \frac{R \vdash \Sigma, y:A\perp, x:B\perp}{x(y); R \vdash \Sigma, x:A\perp \otimes B\perp} \quad \otimes \\
(\nu x)(x(y); (P \mid Q) \mid x(y); R) \vdash \Gamma, \Delta, \Sigma \\
\downarrow \\
Q \vdash \Delta, x:B \quad R \vdash \Sigma, y:A\perp, x:B\perp}
\]
Cut Elimination

(\nu x \ (x (y); \ (P \ | \ Q) \ | \ \bar{x} \ (y); \ R) \vdash \Gamma, \Delta, \Sigma \quad \text{Cut}

Q \vdash \Delta, x : B \quad R \vdash \Sigma, y : A^\perp, x : B^\perp

(\nu x : B) (Q \ | \ R) \vdash \Delta, \Sigma, y : A^\perp \quad \text{Cut}
Cut Elimination

\[
\begin{align*}
P \vdash \Gamma, y : A & \quad Q \vdash \Delta, x : B \\
& \quad x (y); (P \mid Q) \vdash \Gamma, \Delta, x : A \otimes B \\
& \quad (\nu x) (x (y); (P \mid Q) \mid x (y); R) \vdash \Gamma, \Delta, \Sigma \\
\end{align*}
\]

\[
\begin{align*}
R \vdash \Sigma, y : A^\perp, x : B^\perp \\
& \quad x (y); R \vdash \Sigma, x : A^\perp \otimes B^\perp \\
& \quad \Downarrow \\
& \quad R \vdash \Sigma, y : A^\perp, x : B^\perp \\
\end{align*}
\]

\[
\begin{align*}
P \vdash \Gamma, y : A & \quad Q \vdash \Delta, x : B \\
& \quad (\nu x : B) (Q \mid R) \vdash \Delta, \Sigma, y : A^\perp \\
\end{align*}
\]

Cut
Cut Elimination

\[
\frac{P \vdash \Gamma, y : A \quad Q \vdash \Delta, x : B}{x \, (y); \; (P \mid Q) \vdash \Gamma, \Delta, x : A \otimes B} \otimes \quad \frac{R \vdash \Sigma, y : A \perp, x : B \perp}{\bar{x} \, (y); \; R \vdash \Sigma, x : A \perp \otimes B \perp} \quad \text{Cut}
\]

\[
\downarrow
\]

\[
\frac{Q \vdash \Delta, x : B \quad R \vdash \Sigma, y : A \perp, x : B \perp}{P \vdash \Gamma, y : A \quad (\nu x : B) \, (Q \mid R) \vdash \Delta, \Sigma, y : A \perp} \quad \text{Cut}
\]

\[
(\nu y : A) \, (P \mid (\nu x : B) \, (Q \mid R)) \vdash \Gamma, \Delta, \Sigma \quad \text{Cut}
\]
which corresponds to the typical reduction

\[(\nu x : A \otimes B) (x(y); (P \mid Q) \mid \bar{x}(y); R) \rightarrow (\nu y : A) (P \mid (\nu x : B) (Q \mid R))\]

where

\[
\frac{P \vdash \Gamma, y : A}{x(y); (P \mid Q) \vdash \Gamma, \Delta, x : A \otimes B} \otimes \frac{R \vdash \Sigma, y : A^\perp, x : B^\perp}{\bar{x}(y); R \vdash \Sigma, x : A^\perp \otimes B^\perp}
\]

by Cut

\[
\frac{Q \vdash \Delta, x : B}{(\nu x : B) (Q \mid R) \vdash \Delta, \Sigma, y : A^\perp}
\]

by Cut

\[
\frac{P \vdash \Gamma, y : A}{(\nu y : A) (P \mid (\nu x : B) (Q \mid R)) \vdash \Gamma, \Delta, \Sigma}
\]

by Cut
A deep correspondence:
Curry-Howard Linear Logic $\leftrightarrow \pi$-calculus

A *deep* correspondence:

- Proofs *as* Processes
Curry-Howard Linear Logic $\leftrightarrow \pi$-calculus

A *deep* correspondence:

- Proofs *as* Processes
- Propositions *as* Session Types
Curry-Howard Linear Logic \leftrightarrow π-calculus

A *deep* correspondence:

- Proofs *as* Processes
- Propositions *as* Session Types
- Cut Elimination *as* Communication
Benefits of the correspondence

- Canonicity, from the underlying re-appearing structure.
- Free results, e.g., deadlock-freedom from cut elimination.
- Reuse of well-understood logical tools. Examples:
 - Proof-carrying code [Pfenning et al., 11]
 - Typed translation from Functions to Processes [Toninho et al., 12]
 - Logical relations [Perez et al., 12]
 ...
Benefits of the correspondence

- **Canonicity**, from the underlying re-appearing structure.
Benefits of the correspondence

- **Canonicity**, from the underlying re-appearing structure.
- **Free results**, e.g., deadlock-freedom from cut elimination.
Benefits of the correspondence

- **Canonicity**, from the underlying re-appearing structure.
- **Free results**, e.g., deadlock-freedom from cut elimination.
- **Reuse** of well-understood logical tools. Examples:
Benefits of the correspondence

- **Canonicity**, from the underlying re-appearing structure.
- **Free results**, e.g., deadlock-freedom from cut elimination.
- **Reuse** of well-understood logical tools. Examples:
 - Proof-carrying code [Pfenning et al., 11]
 - Typed translation from Functions to Processes [Toninho et al., 12]
 - Logical relations [Pérez et al., 12]
 - ...
So far, the research flow has been Logic → Session Types.

But session types have a very active community (20 years).
So far, the research flow has been Logic \rightarrow Session Types
So far, the research flow has been Logic \rightarrow Session Types.
But session types have a very active community (20 years).
Where do the 20 years of results developed for session types go in this design?
Where do the 20 years of results developed for session types go in this design?

Can we import results from Session Types?
Session Types → Logic
Session Types does not check for taxes

buyer \(\bar{x} (\text{money}); \ x (\text{receipt}); \ P \) \\
| \\
seller \(x (\text{money}); \ \bar{y} (\text{taxes}); \ \bar{x} (\text{receipt}); \ Q \) \\
| \\
tax off. \(y (\text{taxes}); \ R \)
I can forget paying my taxes!

\[
\begin{align*}
\text{buyer} & \quad \overline{x} \ (money); \ x \ (receipt) ; \ P \\
\text{\quad |} \\
\text{seller} & \quad x \ (money); \ \overline{x} \ (receipt) ; \ Q
\end{align*}
\]
Multiparty Session Types [Honda et al., 08]

buyer \[\overline{x} \ (money); \ x \ (receipt); \ P\]
| \[\]

seller \[x \ (money); \ \overline{y} \ (taxes); \ \overline{x} \ (receipt); \ Q\]
| \[\]

tax off. \[y \ (taxes); \ R\]
Multiparty Session Types [Honda et al., 08]

<table>
<thead>
<tr>
<th>buyer</th>
<th>$\overline{x} \ (\text{money}); \ x \ (\text{receipt}); \ P$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>seller</td>
<td>$x \ (\text{money}); \ \overline{x} \ (\text{taxes}); \ \overline{x} \ (\text{receipt}); \ Q$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>tax off.</td>
<td>$x \ (\text{taxes}); \ R$</td>
</tr>
</tbody>
</table>
Multiparty Session Types [Honda et al., 08]

buyer \(x^{BS}(\text{money}); x^{BS}(\text{receipt}); P \)
 |
seller \(x^{SB}(\text{money}); x^{ST}(\text{taxes}); x^{SB}(\text{receipt}); Q \)
 |
tax off. \(x^{TS}(\text{taxes}); R \)
Multiparty Session Types [Honda et al., 08]

buyer \(\overline{x}^{BS}(money); \ x^{BS}(receipt); \ P \)

\[\]

seller \(x^{SB}(money); \ \overline{x}^{ST}(taxes); \ \overline{x}^{SB}(receipt); \ Q \)

\[\]

tax off. \(x^{TS}(taxes); \ R \)

The type of \(x \) is a global type:

\(B \rightarrow S : \langle \rangle; \ S \rightarrow T : \langle \rangle; \ S \rightarrow B : \langle \rangle \)
Type checking in MPSTs

From the global type

\[B \rightarrow S : \langle \rangle; \ S \rightarrow T : \langle \rangle; \ S \rightarrow B : \langle \rangle \]
Type checking in MPSTs

From the global type

\[B \rightarrow S : \langle \rangle; \ S \rightarrow T : \langle \rangle; \ S \rightarrow B : \langle \rangle \]

project the \textit{local type} for each role:

- role \(B \) : send \(S \); recv \(S \)
- role \(S \) : recv \(B \); send \(T \); send \(B \)
- role \(T \) : recv \(S \)
So Multiparty Session Types are not based on duality!
Rather, the compositionality principle is called coherence:

Definition (Coherence)
A set of local types is coherent if they can all be projected from one global type.

Can we really adapt linear logic to this radical change?
Local typing just requires repainting the correspondence!
From Duality to Coherence

Local typing just requires repainting the correspondence!

\[
\frac{P \vdash \Gamma, y:A \quad Q \vdash \Delta, x:B}{x \ (y); \ (P \mid Q) \vdash \Gamma, \Delta, x:A \otimes B} \quad \otimes
\]
Local typing just requires repainting the correspondence!

\[
\frac{P \vdash \Gamma, y^p : A \quad Q \vdash \Delta, x^p : B}{x^{pq}(y); (P \mid P) \vdash \Gamma, \Delta, x^p : A \otimes^q B}
\]
Local typing just requires repainting the correspondence!

\[
\frac{P \vdash \Gamma, y^p : A \quad Q \vdash \Delta, x^p : B}{x^p q(y); (P \mid Q) \vdash \Gamma, \Delta, x^p : A \otimes q B} \otimes \quad \frac{R \vdash \Sigma, y : A, x : B}{\overline{x} (y); R \vdash \Sigma, x : A \& B}
\]
Local typing just requires repainting the correspondence!

\[
\frac{P \vdash \Gamma, y^p : A \quad Q \vdash \Delta, x^p : B}{x^p q(y) ; (P \mid Q) \vdash \Gamma \amp \Delta, x^p : A \otimes q B}
\quad \otimes

\frac{R \vdash \Sigma, y^q : A, x^q : B}{\bar{x} q p(y) ; R \vdash \Sigma, x^q : A \otimes^p B}
\]
Typing Buyer-Seller-Taxes

buyer $\overline{x}^{BS}(\text{money}); x^{BS}(\text{receipt}); P$

seller $x^{SB}(\text{money}); \overline{x}^{ST}(\text{taxes}); \overline{x}^{SB}(\text{receipt}); Q$

tax off. $x^{TS}(\text{taxes}); R$
Typing Buyer-Seller-Taxes

buyer
\[\overline{x}^{BS}(money); \overline{x}^{BS}(receipt); P \]

\[\underline{x}^{SB}(money); \overline{x}^{ST}(taxes); \overline{x}^{SB}(receipt); Q \]

\[\text{tax off.} \quad x^{TS}(taxes); R \]

\[\Gamma, x^B: \bot \otimes^S (1 \otimes^S A) \]
Typing Buyer-Seller-Taxes

buyer \[x^{BS}(money); \ x^{BS}(receipt); \ P \]

\[\vdash \Gamma, x^B: \bot \otimes^S (1 \otimes^S A) \]

seller \[x^{SB}(money); \ x^{ST}(taxes); \ x^{SB}(receipt); \ Q \]

\[\vdash \Delta, x^S: 1 \otimes^B (\bot \otimes^T (\bot \otimes^B B)) \]
Typing Buyer-Seller-Taxes

\[
\begin{align*}
\text{buyer} & \quad x^{BS}(money); x^{BS}(receipt); P \\
\text{seller} & \quad x^{SB}(money); x^{ST}(taxes); x^{SB}(receipt); Q \\
\text{tax off.} & \quad x^{TS}(taxes); R
\end{align*}
\]

\[
\begin{align*}
\text{buyer} & \quad \vdash \Gamma, x^B : \bot \otimes^S (1 \otimes^S A) \\
\text{seller} & \quad \vdash \Delta, x^S : 1 \otimes^B (\bot \otimes^T (\bot \otimes^B B)) \\
\text{tax off.} & \quad \vdash \Sigma, x^T : 1 \otimes^S C
\end{align*}
\]
Composing Multiparty Processes

\[
\begin{align*}
\text{buyer} & \vdash \Gamma, x^B : \perp \otimes^S (1 \otimes^S A) \\
\text{seller} & \vdash \Delta, x^S : 1 \otimes^B (\perp \otimes^T (\perp \otimes^B B)) \\
\text{tax off.} & \vdash \Sigma, x^T : 1 \otimes^S C
\end{align*}
\]
Composing Multiparty Processes

buyer \vdash \Gamma, x^B : \bot \otimes^S (1 \otimes^S A)

seller \vdash \Delta, x^S : 1 \otimes^B (\bot \otimes^T (\bot \otimes^B B))

tax off. \vdash \Sigma, x^T : 1 \otimes^S C

How can we compose them?
Composing Multiparty Processes

buyer \vdash \Gamma, x^B : \perp \otimes S (1 \otimes S A)

seller \vdash \Delta, x^S : 1 \otimes B (\perp \otimes T (\perp \otimes B B))

tax off. \vdash \Sigma, x^T : 1 \otimes S C

How can we compose them? First attempt:

\[
\frac{P_i \vdash \Gamma_i, x^{p_i} : A_i \quad \exists G \text{ s.t. } \text{proj}(G) = \{p_i : A_i\}_i}{(\nu x : G) (\prod_i P_i) \vdash \{\Gamma_i\}_i} \quad \text{MCut}
\]
First attempt:

\[
\frac{P_i \vdash \Gamma_i, x^{p_i} : A_i \quad \exists G \text{ s.t. } \text{proj}(G) = \{p_i : A_i\}_i}{(\nu x : G) \left(\prod_i P_i \right) \vdash \{\Gamma_i\}_i} \quad \text{MCut}
\]

Two problems with that condition:
First attempt:

\[
P_i \vdash \Gamma_i, x^p_i : A_i \quad \exists G \text{ s.t. } \text{proj}(G) = \{p_i : A_i\}_i
\]

\[
(\nu x : G) (\prod_i P_i) \vdash \{\Gamma_i\}_i
\]

MCut

Two problems with that condition:

▶ it does not tell us how to prove it;
First attempt:

\[P_i \vdash \Gamma_i, x^{p_i} : A_i \quad \exists G \text{ s.t. } \text{proj}(G) = \{p_i : A_i\}_i \]

\[(\nu x : G) \left(\prod_i P_i \right) \vdash \{\Gamma_i\}_i \quad \text{MCut} \]

Two problems with that condition:

- it does not tell us how to prove it;
- it does not tell us why the composition is safe.
We propose to treat coherence as a proof system:

\[P_i \vdash \Gamma_i, x^{p_i} : A_i \quad G \models \{ p_i : A_i \}_i \]

\[(\nu x : G) (\prod_i P_i) \vdash \{ \Gamma_i \}_i \quad \text{MCut} \]
Coherence is simple

Here are all the four rules:

\[
\begin{align*}
G & \models \Theta, \ p : B, \ \{q_i : D_i\}_i \\
G' & \models \ p : A, \ \{q_i : C_i\}_i \\
\end{align*}
\]

\[
p \to \tilde{q} : \langle G' \rangle; G \models \Theta, \ p : A \otimes \tilde{q} B, \ \{q_i : C_i \otimes^p D_i\}_i
\]

\[
\text{end}^{p\tilde{q}} \models p : \bot, \ q_1 : 1, \ldots, q_n : 1
\]

\[
G_1 \models \Theta, \ p : A, \ \{q_i : C_i\}_i \\
G_2 \models \Theta, \ p : B, \ \{q_i : D_i\}_i
\]

\[
p \to \tilde{q} : \& (G_1, G_2) \models \Theta, \ p : A \oplus \tilde{q} B, \ \{q_i : C_i \&^p D_i\}_i
\]

\[
G \models p : A, \ \{q_i : B_i\}_i
\]

\[
?p \to !\tilde{q} : \langle G \rangle \models p : ?A, \ \{q_i : !B_i\}_i
\]
Coherence looks right

- Isomorphism between well-formed global types and coherence proofs: Global Types as Coherence Proofs!
- We know how to prove the condition $G \models \{p_i : A_i\}_i$ now: just do a proof.
Coherence looks right

- Isomorphism between well-formed global types and coherence proofs: Global Types as Coherence Proofs!
- We know how to prove the condition $G \models \{p_i : A_i\}_i$ now: just do a proof.
- But most importantly...
Coherence looks right

- Isomorphism between well-formed global types and coherence proofs: Global Types as Coherence Proofs!
- We know how to prove the condition \(G \models \{ p_i : A_i \}_i \) now: just do a proof.
- But most importantly...
 - We know why it works: Cut Elimination!
A communication

\[(\nu x : p \rightarrow \tilde{q} : \langle G' \rangle ; G) \left(\prod_i x^{q_i} p(y); (P_i | Q_i) | \bar{x}^{p\tilde{q}}(y); R | \prod_j P_j \right)\]
A communication

$$(\nu x : p \rightarrow \tilde{q} : \langle G' \rangle ; G) \left(\prod_i x^{q_i} p(y); (P_i \mid Q_i) \mid \bar{x}^{p\tilde{q}}(y); R \mid \prod_j P_j \right)$$

$$\rightarrow \quad (\nu y : G') \left(\prod_i P_i \mid (\nu x : G) (\prod_i Q_i \mid R \mid \prod_j P_j) \right)$$
Results

Session fidelity: reductions follow the protocols.

Cut Elimination, and hence deadlock-freedom.
Results

- **Session fidelity**: reductions follow the protocols.
Results

- **Session fidelity**: reductions follow the protocols.
- **Cut Elimination**, and hence deadlock-freedom.
More on coherence

Projection: a global type yields a set of corresponding local types, by isomorphism with coherence proofs.

Extraction: a proof search for coherence extracts the global type that some local types follow.
More on coherence

- **Projection**: a global type yields a set of corresponding local types, by isomorphism with coherence proofs.
More on coherence

- **Projection**: a global type yields a set of corresponding local types, by isomorphism with coherence proofs.
- **Extraction**: a proof search for coherence extracts the global type that some local types follow.
In the paper

- All the rules.
- More nice properties.
- Examples with multiple sessions.
In the paper

- All the rules.
In the paper

- All the rules.
- More nice properties.
In the paper

- All the rules.
- More nice properties.
- Examples with multiple sessions.
Conclusions

- Curry-Howard goes both ways.
Conclusions

- Curry-Howard goes both ways.
- What new things will arise?
Thank you!
Thank you!

Questions?