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Abstract. Software-defined networking and network function virtualization
have brought unparalleled flexibility in defining and managing network archi-
tectures. With the widespread diffusion of cloud platforms, more resources are
available to execute virtual network functions concurrently, but the current
approach to defining networks in the cloud development is held back by the
lack of tools to manage the composition of more complex flows than simple
sequential invocations.
In this paper, we advocate for the usage of choreographic programming for
defining the multiparty workflows of a network. When applied to the compo-
sition of virtual network functions, this approach yields multiple advantages:
a single program expresses the behavior of all components, in a way that is
easier to understand and check; a compiler can produce the executable code
for each component, guaranteeing correctness properties of their interactions
such as deadlock freedom; and the bottleneck of a central orchestrator is re-
moved. We describe the proposed approach and show its feasibility via a case
study where different functions cooperatively solve a security monitoring task.

Keywords: Software-defined Networks, Virtual Network Functions, Chore-
ographic Programming, Network Security, Denial-of-Service

1 Introduction

Software-Defined Networks (SDNs) [1] and Network Function Virtualization (NFV) [2]
have revolutionised network architectures: SDNs enable the straightforward, dynamic
management and configuration of network resources through a programmable soft-
ware layer, while NFV replaces dedicated hardware appliances with software (Virtual
Network Functions – VNFs) that runs on commodity hardware, promoting flexibility
and scalability. Traditionally, VNFs are programmed in a way that recalls orchestrated
sequential compositions from service-oriented computing. We attribute the choice of
this programming approach to resource constraints, which make running multiple
VNFs together unfeasible, even if more than half of real-world enterprise network
functions could logically work in parallel [3], and to the complexity of distributed
composition, which is a renowned problem of concurrent/distributed programming
that can lead to inconsistent behavior and incorrect results [2].
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Nowadays, VNFs could be replaced by Cloud-native Network Functions (CNFs),
a specialisation of VNFs designed to run in cloud environments, leveraging container-
ization and microservice technologies. CNFs are modular, scalable, and dynamically
deployable, thus overcoming the constraints on resources that hindered the parallel
execution of monolithic VFNs. Yet, CNFs still struggle to become standard practice
mainly because their execution and coordination essentially constitute distributed
software based on message passing, whose correct implementation is notoriously
challenging even for experts [4]. It is easy, for example, to write communication
actions in different programs that fail at interacting because of wrong timing or
mismatches in expected payload types. Avoiding these bugs with code analysis tools
is often impractical because of the state explosion problem of concurrent software [5].
Furthermore, editing the code of one VNF might break compatibility with other
VNFs, so their deployment needs to be coordinated carefully. The full potential of
SDNs and VNFs deployment and management via CNFs remains therefore untapped
due to the challenge of writing and managing distributed software.

We address the problem of correctly implementing distributed CNF architectures
for SDN systems by connecting the fields of SDNs and programming languages.
Specifically, we take a step towards taming the complexity of developing correct CNF
architectures with a development process for SDNs based on Choreographic Pro-
gramming [6] (CP), a recent programming paradigm for concurrent and distributed
software. CP allows developers to write a coordination plan (a ‘choreography’) for
a set of distributed roles (abstractions of communicating processes), which is then
automatically translated by a compiler into an executable program for each role.
This approach greatly reduces code complexity, because the planned communications
become syntactically manifest and can be expressed succinctly. Furthermore, the com-
pilation of choreographies is backed by well-understood mathematical theories that
focus on the correct matching of message send and receive actions in the generated
programs. As a result, CP can guarantee important safety and liveness properties
like the absence of communication mismatches (messages have the expected type,
are sent on the right channels, etc.) and deadlock-freedom [7].

To reify the approach we propose, we use the most advanced choreographic
language to date: Choral [8]. Practically, Choral extends the Java language with
locality information about data. In Choral, T@A denotes data of type T located at a
participant, also called role, A. Given a collection of located data, we can move any
of these values from a role to another with methods that take data at a role and
return it at second one. Following this abstraction, we propose to model a CNF as
a role and have multiple CNFs participate in a choreography to implement a desired
distributed behaviour. Our main contribution is a prototype software development
method for SDNs based on Choral, called Choreography-Defined Network (CDN),
which we schematically represent as follows.

Choral
Choreography

Choral
Compiler
=======⇒

Java code
for each VNF
+ local code

Java Compiler
& Containerisation================⇒

CNF
executables
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In CDN, developers write a choreography that collectively defines the overall
behaviour of multiple CNFs. Then, leveraging Choral’s compiler, they obtain the
implementation of each VNF for the target SDN as a Java program that they can
link to local code (which can implement some private logic, e.g., traffic filtering),
compile it to Java executables and containerise it to obtain a deployable CNF.

To the best of our knowledge, this is the first work that proposes such a connection,
of which we provide a concrete instantiation, through the usage of Choral and the
implementation of a timely, representative case study on network attack manage-
ment and mitigation of Distributed Volumetric Attacks. We show that, by using a
choreographic approach, it is possible to program networks going beyond the simple
chaining of functions, allowing for more complex parallel patterns. Besides managing
complexity, the choreographic approach provides a by-construction guarantee that
removes problems such as deadlocks and race conditions.

In this paper, we provides the necessary background knowledge, and compares our
approach with related work, in Section 2. Then, in Section 3, we present a case study
focused on mitigating Distributed Denial of Service Attacks (DDoS) that we use to
showcase the practical application of CDN. Section 4 describes the implementation of
the use case illustrating both the ergonomics of the approach and how it naturally lends
itself to translating workflow-like schemas into code artefacts that generate the imple-
mentation of the system. In Section 5, we discuss the advantages and challenges of the
choreographic approach. In Section 6, we draw closing remarks and discuss future work.

2 Background and Related Work

2.1 Modern Networking

Modern architectures are the product of two (r)evolutionary waves of innovation. The
first wave saw the advent of layering and “softwarisation” of network functions. It
began with the separation of duties between the control plane (managing sessions and
signalling) and user plane (handling data traffic)—as, e.g., adopted in the Software-
Defined Networking (SDN) model, which places the burden of network programming
fully on a controller that gives detailed forwarding instructions to devices via a dedi-
cated protocol [9]—and proceeded with the introduction of Virtual Network Functions
(VNFs), i.e., software-based network components such as routers and security gateways.

Network Function Virtualization (NFV), the process of replacing specialized
devices with VNFs that can be deployed, e.g., on a virtual machine or a container,
nicely integrates into the SDN paradigm [10]. Separating VNFs from their underlying
hardware introduces various management challenges, such as mapping services to
NFV networks, placing VNFs correctly to fulfil service objectives, and dynamically
allocating and scaling hardware resources. It also involves monitoring the location
of VNF instances and managing fault detection and recovery across the network.

To support the development of NFV components, the Linux Foundation, in
cooperation with ETSI, launched an open-source reference platform called the Open
Platform for Network Function Virtualization (OPNFV)4 in 2014, and later expanded
to include the Management and Orchestration (MANO) section.
4 https://www.opnfv.org/
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The second wave saw some intelligence put back on a programmable data plane
(PDP) by leveraging devices that can execute code, e.g., P4-enabled switches [11, 12],
to re-enable line-rate traffic analysis. To avoid losing the advantages of the SDN/NFV
approach, these devices should be integrated in the management paradigm. To this
end, various approaches have been proposed for runtime interaction with P4 devices
[13], with Real Time Pipeline Reconfiguration being the latest frontier of network
programmability [14]. Clearly, choosing how the data plane devices should behave
in different conditions is a decision that needs to be orchestrated together with all
the higher-level network management decisions.

2.2 Choreographic Programming and Choral

Choreographic Programming [7, 15–18] sinks its roots in service-oriented program-
ming. Service-orientation distinguishes between two ways of implementing the logic
of services that belong to a distributed system: orchestration and choreography.

In orchestration, one service, called the orchestrator, coordinates the actions of the
other services involved in an architecture. The orchestrator encapsulates and executes
the distributed system’s logic, managing all interactions among the participating
services. While orchestration simplifies implementation and verification against a
reference specification, it has several drawbacks. The orchestrator acts as a single
control point, thus it can become a twofold bottleneck: its computational resources
may reduce the efficiency at which it dictates operations to other services, and it
may add latency in scenarios with network limitations, since it must mediate all data
exchanges. Furthermore, it is a potential single point of failure and a highly valuable
target for cyberattacks, putting system resilience at risk.

As an alternative to orchestration, choreographies distribute the logic of the
distributed system among the participants in the architecture. Like a choreographed
performance, each service in a choreography plays a specific role and performs the
corresponding actions, implementing its part in the architecture’s overall interaction
scheme. In this paper, we follow an interpretation of choreographies called choreo-
graphic programming, whereby developers specify the actions and interactions of all
the involved services as a choreographic program. Then, given a source choreography,
the developers use a compiler to automatically generate the correct code of all the
services that participate therein.

CP differentiates itself from neighbouring approaches, such as using choreographies
as specifications or as types [19], by the fact its artefacts are written in a fairly concrete
language. For instance, a choreographic language usually allows programmers to specify
the distribution of values among the participants, message exchanges, and distributed
branching behaviours. The hallmark characteristic of choreographic programming is
that programmers cannot express deadlocks on messages—thanks to the fact that inter-
actions syntactically pair the sending and reception of messages. Then, compilers that
support behaviour-preserving properties can generate the code of the participants from
a given choreography, guaranteeing that their combined, distributed execution faith-
fully follows the semantics of the source, including the absence of message deadlocks.

Concretely, we focus on the usage of Choral [8], the first language that marries
choreographic programming with object orientation. In Choral, T@A denotes data of
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type T at the role A, which one can move by applying methods that take data at a
role and return it at another one. Objects that provide these methods are typically
called channels. For example, the following two lines of Choral code produce some
data at a role A and then use a channel to copy the data to another role B.

1 PacketFeature@A x = analyser.extractFeatures();
2 PacketFeature@B y = channel.<PacketFeature>com(x); Choral

Note how, in the second line, the implicit send action at A and receive action at B
are safely abstracted away by the atomic invocation of method com. Using the Choral
compiler, we obtain the Java code for A and B, shown below, where we find the above
actions implemented by the respective participants: A generates the data (in x) and
sends it via channel, which B uses to receive it (in y).

Given a Choral program, we can compile it into pure Java libraries, each imple-
menting the behaviour of one of the participants. As an example, we report below
the Java code for A (left) and B (right) compiled from Choral. Using their respective
Java code, programmers can modularly compose the choreographic behaviour of a
role with local libraries and correctly participate in their distributed architecture.
// Implementation of A
PacketFeature x = analyser.extractFeatures();
channel.<PacketFeature>com(x); Java

// Implementation of B
PacketFeature y = channel.<PacketFeature>com();

Java

2.3 Related Work

Since the first release of the Open-Source MANO framework by the Etsi Foundation
in 2016, the focus of most of the related research has been on enhancing the adapt-
ability, efficiency, and security of VNF deployments in increasingly complex network
environments. Contrarily, only a few works consider the communication logic between
NFVs, mainly looking at standardising the identification and representation of an
NFV through descriptors.

Nguyen et al. [20] introduced an AI-driven approach to VNF chain orchestration,
which optimises resource allocation through predictive analysis of network demands
and conditions. He et al. [21] expanded on the integration of VNFs with edge comput-
ing, proposing a decentralised orchestration model that enables more efficient data
processing and reduces the strain on core network resources. This model leverages edge
nodes to perform local data processing before transferring information to centralised
servers, thereby enhancing the responsiveness of network services. He et al.’s approach
improves the ability to automatise the process of NFV deployment via resource
allocation analysis. However, there is no reference to the possibility of automating the
generation of the VNFs themselves through a more structured, high-level language,
which is instead one of the main advantages of our solution.

To the best of our knowledge, the only approach for VNF definition that can
be considered at a similar level of abstraction as ours is Intent-Based Networking
(IBN). IBN is a concept that aims to apply automation intelligence to devise network
configuration plans, replacing the manual processes of initial set up and reaction to
issues. Similar to the choreographic approach, IBN can abstract and define the behavior
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of the network functions at a higher level; yet, in its current state, it would require a
different hardware technology, making its implementation not promptly feasible [22].

Focussing on security, Hasneen and Sadique [23] surveyed the security challenges
5G must face when implementing its slicing capabilities with SDN and VNF tech-
nologies. In particular, Lakshmanan et al. [24] and Sun et al. [3] provide deployment
solutions that can prevent a chain misconfiguration or vulnerability by design, but
they consider the simplified scenario in which functions are not invoked in parallel.

Considering multidomain VNF deployment, Huff et al. [25] address the challenge
of the management of the reliability of the network deployment in different domains
(e.g., cloud providers, on-premises servers, etc.) with an architecture that can connect
to the different chains in the cloud through tunnels (VPN or VXLAN) and guarantee a
certain level of reliability. With the choreographic approach, the reliability level can be
natively introduced in the choreographic logic in a way that is both terse and reusable.

Regarding the case study we chose for the validation of our approach (cf. Sec-
tions 3 and 4), the closest related work is SDNShield [26], a network solution based
on NFV technologies that enforces comprehensive defence against potential DDoS
attacks on SDN control plane. The authors implemented their scheme by deploying
VNFs, but differently from us, they rely on a centralised SDN controller that has to
manage the flow on the chain; the controller is a unique point of failure that reduces
the reliability of the network and possibly constitutes a bottleneck. In addition, the
logic is hardcoded inside VNFs, which makes it not portable to local scenarios and
difficult to adapt to other attacks. Our choreographic approach allows more flexibility
and adaptability to the scenario, yet introducing better resilience by eliminating by
construction problems like deadlocks and races.

3 A Case Study on DoS mitigation

To showcase the usage of choreographic programming for the development of an SDN,
we consider the case of using traffic analysis to detect volumetric network attacks. In
particular, we aim to detect attacks using anomaly detection techniques, such as flow
asymmetry [27], characterised by the possibility of generating many false positives
depending on the anomaly threshold that is set or the efficiency of the detection
engine [28]. In these scenarios, an effective strategy is to combine multiple detection
engines, with different sensitivities and thresholds [29] to have a deeper and more
certain result rather than relying on a single oracle.

We consider a network topology in which traffic flows through a switch, pro-
grammed to mirror it towards virtual network functions deployed on the edge, to
avoid sending huge amounts toward, e.g., a cloud computing centre. As visualised
in Figure 1, the network relies on the following four VNFs:

– Split&Agg (SA). This function sends the traffic to the VNFs in charge of analysing
it, possibly selecting which ones to involve, and then deciding which packets
should be forwarded depending on the received responses.

– Volumetric Anomaly Traffic Inspection (VOL). This function is configured with
a set of Anomaly detection rules5 that try to identify the maliciousness of a

5 https://www.ibm.com/docs/en/qradar-on-cloud?topic=rules-anomaly-detection
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Fig. 1. A comparison of the case study workflow using the choreographic approach (left
side) vs the classic SDN orchestrated one (right side). The red dotted arrows represent a new
attack signature generated by each VNF, and the yellow ones are the workflow possibilities
(when the VNF can stop the detection process) (cf. Section 4).
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specific flow. The output is a “Benign/Malicious” answer to tell whether the flow
must be deeper analysed or it is a legit flow.

– ML Detection Engine (ML). This function uses ML techniques (e.g., a neural net-
work [30]) to inspect and detect if a flow is malicious or not, with a known level of
reliability. When a malicious flow is detected it reports the finding to the first VNF.

– Signature Attack Detection (SIG). Every attack (e.g., DoS, Spoofing) can be
represented with a signature (e.g., a hash of the payload). A commonly done by
antivirus software, this function checks the flows against a database of signatures
to find indications of known attacks. This detection mechanism is the fastest
and less prone to false positives, but it cannot detect attacks that have not been
previously classified.

As presented in Figure 1, the traffic is first mirrored by the SW to SA that filters
the packets to forward to all the other three VNF. The VOL, ML, and SIG functions
receive the filtered flow from SA and perform their analysis in parallel independently.
When they reach a decision and classify the flow either as malign or benign, they
independently inform the SA about the decision. Notice that the interaction could also
be more complex since VOL may not be able to make a decision due to insufficient
data and, as a consequence, SA can instruct to increase the amount of traffic to
collect (Increase Window Size arrow).

To further illustrate the advantage of the choreographed approach w.r.t. the
orchestrated one, on the right side of Figure 1 we represented the same workflow but
implemented with a classic SDN NVF chain with a centralised controller. The red
dotted arrows on the left side show two more inter-VNF communications that can
happen without the mediation of the controller, which in these cases would be useless
in principle since the interactions do not belong to the process of attack detection.
These messages are used to update SIG when a new attack is confidently detected, and
its signature can be added to the database. These actions improve the system without
overloading the controller. The same interactions are represented with the same red
dotted arrows on the right side, where is it possible to note the difference; they must
always go back to the centralized controller flow, and they cannot act independently.
The yellow dashed arrow otherwise indicates the direction of the chain flow. As can be
seen in the choreographic approach (left side) any NFV can independently interrupt
the analysis, if appropriate (e.g., high-confidence attack detection), while the classical
approach (right side) each time needs to pass the whole chain before producing a result.

Finally, also the reaction to the attack can bypass the controller in the interest
of timeliness (leftmost left-pointing arrows). SA can use P4Runtime6 to instruct the
switch to stop monitoring benign flows, or to implement a mitigation action (e.g.,
packet filtering) against a malicious flow.

4 Implementation

We now report salient remarks on the implementation of the case study from Section 3:
its Choral implementation and its deployment as a system of VNFs.
6 https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html

https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
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4.1 Choral Implementation

We illustrate the experience of programming the scenario from Section 3 using Choral
by focusing on the multiparty interaction between the volumetric anomaly traffic
inspection function VOL, the ML detection engine MLE, and the signature attack
detection function SIG for updating the attack signature (the red, dot-dashed arrows
within the chain workflow in Figure 1). The interested reader can find the full code that
implements the case study at https://anonymous.4open.science/r/chorSDN-676D.

Recalling the relevant exchanges in Figure 1, ML and VOL send to SIG their
analysed data signatures, which then SIG processes to label the flow. A possible
Choral implementation of said exchange is the following.

Optional@SIG<DataSignature> s1 = ch_ml_sig.<>com( ml_analyser.genSignature() );
Optional@SIG<DataSignature> s2 = ch_vol_sig.<>com( vol_analyser.genSignature() );
sig_analyser.labelFlow( s1, s2 ); Choral

In the first line, on the right of the assignment, we write that ML sends to SIG the
result of the analysis of the data it previously processed, found in the object (located at
ML) ml_analyser and obtained through the invocation of the method genSignature.
The communication happens by passing to the method com of the object ch_ml_sig the
result of genSignature. Like channel in Section 2.2, ch_ml_sig is a (symmetric) chan-
nel shared between ML and SIG, which transmits the data returned by genSignature
—an Optional that can contain the DataSignature of the attack, if any—to SIG. At
the left of the assignment, we find the variable s1, local to SIG, where it stores the data
sent from ML. Similarly, in the second line, we find that VOL sends a possible attack
signature to SIG, which stores said data in s2. At the third line, SIG invokes the method
labelFlow of its analyzer (sig_analyser) to update its set of attack signatures.

The Choral code above is compiled into separate Java implementations for VOL,
ML, and SIG, as shown below.

// Implementation for SIG
Optional<DataSignature> s1

= ch_ml_sig.<>com();
Optional<DataSignature> s2

= ch_vol_sig.<>com();
sig_analyser.labelFlow( s1, s2 );

// Implementation for ML
ch_ml_sig.<>com( ml_analyser.genSignature() );

// Implementation for VOL
ch_vol_sig.<>com( vol_analyser.genSignature() );

We conclude our example by contrasting the distributed implementation above
with the one below, which implements the same logic in the traditional orchestrated
way, where SA is the orchestrator. The main takeaway is that the orchestrator needs to
mediate the interactions between VOL, ML, and SIG, both imposing an unnecessary
bottleneck and increasing the total number of communications (wasting time and
bandwidth and exposing the system to increased risk of communication failures).

1 // orchestration at SA
2 Optional@SA<DataSignature> t1 = ch_ml_sa.<>com( ml_analyser.genSignature() );
3 Optional@SA<DataSignature> t2 = ch_vol_sa.<>com( vol_analyser.genSignature() );
4 Optional@SIG<DataSignature> s1 = ch_sa_sig.<>com( t1 );
5 Optional@SIG<DataSignature> s2 = ch_sa_sig.<>com( t2 );
6 sig_analyser.labelFlow( s1, s2 ); Choral

https://anonymous.4open.science/r/chorSDN-676D
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4.2 Deployment of the Network

For the creation of the SDN, as practised in cloud network development, each VNF
was instantiated within a container. The infrastructure was created according to cus-
tom docker Linux-like family images, connected via a local docker network capable of
handling up to 14MB/s bandwidth. All code was executed on a PC with Ubuntu 22.04
with 16GB RAM and an i7 core processor. For the creation and management of the
infrastructure, we used the Kathara tool7, i.e., an open-source container-based network
emulation system for testing production networks in a sandbox environment. We there-
fore created an architecture composed of 5 containers, one for each of the 4 VNFs and
the switch. The virtual switch is developed in the P4 language and contains flow rules to
monitor anomalies. The P4 switch was emulated using the v1 model architecture for P4
and its virtualized version BMv2.8 The VNF were instead deployed creating a docker
image for each of the VNFs and installing the specific tools and settings for each one.

For implementing VOL we used a modified version of a symmetric Count-min
Sketch[31] designed by observing the behavior of volumetric DDoS attacks. This
unexpected value is represented by the traffic volume between the compromised client
and the victim which, the more restricted the flow surface is, the more is expected
to be much larger than the traffic volume in the opposite direction.

ML uses a standard Random Forest Classifier implemented using the scikit-learn
python library,9 with the ability to read a process real-time traffic with the scapy
library.10 For the training set we used a custom dataset composed of 10% of benign
traffic (taken from the CIC-IDS2017 dataset[32]) and 90% of DDoS traffic (generated
with the hping311 Linux utility).

SIG has instead been implemented with a light version of Suricata12 threat
detection software and a database of default rules taken from the nuclei-discover
repository [33].
A new database entry, in the form of a new rule/signature, can be added if the overall
system identifies a new malicious flow. In this way, either the choreography in the
final stage, ML or VOL can add new signatures to the database of the SIG.

The overall workflow of the deployment of the scenario is shown in Figure 2. The
initial choreography written in Choral is compiled and the result is a set of java files,
one for each VNF. The Choral compiled code and the code to implement the local
functions are then compiled to obtain a JAR application ready to be deployed in a
container. Kathara then creates the final infrastructure, loading the JAR application
and installing the necessary tools to execute the VNF at runtime. Once the containers
are created, Kathara creates the network scenarios and deploys the infrastructure
using a cloud provider, which in our case has been a local deployment with both
docker containers and docker network.

7 https://www.kathara.org/
8 https://github.com/p4lang/behavioral-model
9 https://scikit-learn.org/stable/

10 https://scapy.net/
11 http://wiki.hping.org/
12 https://suricata.io/

https://www.kathara.org/
https://github.com/p4lang/behavioral-model
https://scikit-learn.org/stable/
https://scapy.net/
http://wiki.hping.org/
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Fig. 2. The case study workflow, from the Choral code to the infrastructure deployment

Test To test our network, we generated traffic with up to 5 malicious flows. VOL has
been set with a low detection threshold, useful for promptly identifying a volumetric
attack and submitting it for analysis to MLE. We ran the attack traffic for 5 minutes
and considered the amount of traffic management generated from all the REST API
and inter-process communication calls. As expected, even in the worst scenario of 5 ma-
licious flows generated (which represented 90% of the total traffic) the amount of man-
agement traffic generated was proportional to the number of malicious flows identified,
and reached a maximum level of 15MB that was manageable by our infrastructure.

5 Discussion: Advantages and Limitations

We conclude by discussing the advantages and open challenges of using choreographic
programming and looking at future work. We structure the discussion by comparing
our proposal against the traditional SDN implementation with a centralized controller
orchestrating all the function chains.

Advantage: Direct Intra VNF Communications The choreographic approach allows
direct communication between VNFs. In classical SDN architectures, such communi-
cation is not possible unless hardcoded directly into the VNFs, which is discouraged
since hardcoding communication makes the component difficult to port and extend.
The best practice chosen by ETSI is instead to run all requests through the controller,
following a star-like architecture where the controller mediates all communications.
Using direct communication between the VNFs can save traffic (e.g., no need to have
two communications with the orchestrator if a VNF has to send data to another one).

Advantage: No SDN Controller/Orchestrator The orchestration of VNF chains
is typically implemented within the controller itself or as an application layer. The
controller (often seen as a Network Operation System) is designed to interact with
applications through a so-called Northbound Interface, similar to an operating system
kernel that accesses device drivers. Traditionally, to create a VNF chain, it is necessary
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to create a new northbound application, that implements the communication logic
between VNFs. This requires implementing the communication logic and adapting it to
the proper controller like ONOS [34]. With the choreographic approach, we are not tied
to any particular type of controller and we are not required to follow any specific design
pattern. We are not bound to use libraries and controller code that must be compatible
with the rest of the environment and applications. Since choreographic programming
allows independent communication among VNFs, the choreographic solution thus
avoids the need to create bottlenecks typical of controller-based SDN architecture.

Advantage: Security by Design In a classical SDN approach, performing verification
on the validity of network policies is done with various formal model techniques such
as reachability graphs [35] or by using atomic predicates [36] at the data plane level.
With choreographic programming, we use a security-by-design approach for network
development that avoids the typical communication problems of distributed systems
(e.g., deadlocks, race conditions, etc). Moreover, with a choreographic approach, the
availability of a global overview of the entire system eases the task of verifying the
global properties of the system at the application/logic level.

Advantage: Parallel VNF execution In the traditional approach, the VNFs work-
flow is often rigid and sequential: each VNF is executed one after another, leading
to a linear progression of tasks. While this method is effective in ensuring that each
function is processed in a controlled manner, it may also introduce bottlenecks and
inefficiencies, especially when dealing with complex network architectures or high vol-
umes of data. Choreographic programming removes the constraint of executing VNFs
sequentially. Multiple VNFs can be initiated and processed simultaneously, without
the need to wait for the completion of preceding tasks, unlocking new possibilities
for optimizing network performance and resource utilization.

Challenge: failure handling Choreographic languages assume reliable communica-
tions. The only exception is the language theory presented in [37], which shows that
one can relax this assumption, by allowing the choreographic language to handle local
exceptions. Choral follows this strategy relying on the exception mechanism of Java
and local failure recovery code [8, Sec. 2.5] which results in codebases that mix high-
level choreographic interactions and low-level recovery strategies. Although Choral’s
object-orientation allows programmers to encapsulate the latter into high-level APIs,
its type system can offer limited support to reason about the robustness of recovery
strategies. Indeed, supporting programmers in writing robust and effective choreogra-
phies is still an open issue beyond Choral or even choreographic programming.

Challenge: knowledge of choice When a choreography describes a choice between
two possible branches, all affected participants must be (made) aware of the outcome
to ensure that their local implementations agree on which branch to execute. In
choreographies, this is called knowledge of choice (KoC). The standard solution for
achieving KoC is communicating the choice outcome to the affected participants
using special messages used by choreographic compilers to check that KoC is indeed
achieved. Because of limitations in the current compilers, some of these communi-
cations might be redundant and there is ongoing work to address this issue: [38]
proposed a more flexible analysis for the Choral compiler that allows piggybacking of
these special messages batching them with other communications in the protocol; [39,
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40] detail automatic procedures for inserting these communications for programmers;
[41] proposed an analysis in an abstract choreographic language that dispenses from
many of the communications needed by current analyses.

6 Conclusion

We presented a novel methodology for service composition in Software-Defined
Networks and Network Function Virtualization, specifically tailored for cloud envi-
ronments. Departing from conventional sequential service chaining, the approach uses
choreographies to model Virtual Network Functions’ (VNFs) roles and interactions.
We showcase several advantages of the proposed approach, such as a holistic view
of interactions and automatic code generation for each VNF, which eliminates the
need for a centralised control node, reducing concurrency issues and communication
overhead with the controller.

The validity of the proposed approach derives from the CP paradigm, which
guarantees the implementation of a correct-by-construction VNF architecture given
a choreography. We demonstrated the feasibility of the proposed approach via a
practical case study where we used the state-of-the-art choreographic language Choral
to develop a distributed composition of several VNFs collaborating to analyse network
traffic and detect security threats. Qualitatively, we show that our approach decreases
the number of communications happening in the system w.r.t. the traditional SDN
implementation as an orchestrated system. Providing a quantitative validation is
a necessary future step of this research direction, considering representative, real
scenarios and metrics that demonstrate the efficiency of the proposed solution.

We envision two further future directions. The first one encompasses the challenges
presented above, related to error handling and recovery. The second one envisages the
definition of a meta-choreography that could define the infrastructural interactions
needed to deploy the VNFs, by interacting with the SDN controller, and the dynamic
and flexible forwarding of traffic by means of programmable data plane devices. A
further extension of this undertaking could be the development of a new compiler for
Choral that, instead of generating Java, could output P4 code, so that some parts
of the distributed application may be executed on programmable switches instead
of containers or virtual machines.
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