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Abstract. In the lifetime of a service-oriented architecture, the Appli-
cation Programming Interfaces (APIs) offered by services may need to be
refactored in order to adapt to changing business and technical require-
ments. Previous studies focused on the effects that such API refactorings
have on API definitions, with general considerations on related forces and
smells. By contrast, the development strategies for realising these refac-
torings have received little attention. This paper addresses this aspect.
We introduce EMI, a conceptual framework for the implementation of
API refactorings. Our framework is designed to elicit the trade-offs and
choices that significantly affect the efficiency, maintainability, and isola-
tion of the resulting architecture. We evaluate our framework by evolving
a use case through the implementation of several refactorings, illustrat-
ing the different implementation choices that can be made. Based on
our experience, we illustrate how to derive mechanical recipes for API
refactoring that can follow different strategies in our framework.

1 Introduction

In service-oriented architectures, individual (micro)services perform specific func-
tions and interact through well-defined Application Programming Interfaces
(APIs) [4]. Over time, service APIs evolve because of changing requirements [5–
8]. This prompted the study of API refactoring : the modification of interfaces
to improve quality attributes, such as efficiency [18,19].

Recently, a catalogue of API patterns provided a basis for API refactor-
ings [19, 25]. Previous studies focused on the high-level forces (e.g., modifiabil-
ity) and smells (e.g., high latency) that motivate and guide these refactorings.
Conversely, it is yet unexplored how developers are supposed to implement an
API refactoring and assess its quality; a research gap that we aim to address.

In this paper we introduce EMI (efficiency, maintainability and isolation),
a conceptual framework for assessing the implementation of API refactoring in
service architectures (Section 3). EMI centres around two dimensions: 1) gener-
ality, which assesses the degree of abstraction of the refactored API source code;
2) distribution, which elicits where the refactored API source code resides. Real-
ising the combination of both dimensions results in six development strategies,
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each representing design choices for the implementation with respective trade-
offs. The trade-offs pertain the quality aspects of efficiency (E), maintainability
(M), and isolation (I) of the resulting architecture. We score each of these three
aspects from 1 to 3 for our strategies, yielding the EMI score for API refactor-
ing. There is no silver bullet: no strategy scores perfectly (9), emphasising the
importance of making conscious implementation decisions.

We validate the applicability of our framework by carrying out several API
refactorings on an illustrative publication catalogue service (Section 4). Specifi-
cally, we apply our six development strategies to the same refactoring: the intro-
duction of the API Key pattern – which rejects requests without a valid key – to
a service that offers a catalogue of scientific publications (Section 4.1). We then
broaden our study to patterns that do not require behavioural changes, Merge
Endpoints and Version Identifier, reaching modular solutions (Section 4.2).
Our development is available as a benchmark for future research [12]. A main
finding is that our framework can be used to distill systematic recipes for API
refactoring, which developers can mechanically apply step by step to achieve an
implementation with a declared EMI score (Section 5). As examples, we provide
recipes for the introduction of API Key and Pagination patterns.

In summary, we contribute the EMI framework (Section 3), a scheme to guide
and assess the implementation of API refactorings, we validate EMI by applying
API refactorings to (micro)service architectures (Section 4), and provide canon-
ical recipes to obtain certain EMI scores for architecture evolution (Section 5).
We also discuss related work in Section 2, elicit threats to validity in Section 6,
and conclude with an outlook on future work in Section 7.

2 Related Work

Our study builds on the reference catalogue of patterns for API design [25],
which addresses the challenge of remote API design [23] through peer-reviewed
patterns published in the period 2017–2020 [10,20–22,24].

API refactoring was previously investigated based on the same catalogue [18,
19]. Those studies focus on architectural considerations and especially why and
when an API pattern should be introduced, considering forces and smells. Dif-
ferently, our work is the first to investigate how an API pattern is implemented.
Specifically, we are interested in the different choices regarding the code of a
refactoring, and the quality trade-offs that they yield. Another difference is that
we study how to refactor both the definition and implementation of an API,
whereas previous work focuses only on the definition. Our frameworks can be
seen as a refinement of Attribute-Driven Design and Architecture Trade-off Anal-
ysis Method, which are concerned with informing and assessing architectural
decisions in light of quality attribute requirements [1].

The two axes of generality and distribution in EMI can be seen as systematic
organisations of various considerations made in the literature of programming
languages and microservices. Methods for high generality include aspect-oriented
programming [9] and linguistic abstractions for implementing reusable decorators
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(e.g., couriers in Jolie and delegation in Kotlin). The importance of distribution
was already partially observed in [13] for the development of circuit breaker – a
pattern for increasing resilience [14] – and later acknowledged in security recom-
mendations [3]. The developments in [13] fall under Parametric/Adjacent and
Parametric/External in our framework (Section 3). Our interest in the present
work is much more general: rather than focusing on a specific use case, we for-
mulate a framework that can be used to reason about any API refactoring.
Furthermore, the quality aspects considered here are not considered in [13].

The code in our validation of EMI is written in the service-oriented pro-
gramming language Jolie [11], for reasons of exposition: Jolie provides native
abstractions for the key concerns of API definition and refactoring, like API
endpoints and the definition of APIs polymorphic on other APIs (which we use
to achieve reusable refactorings) [11, 17]. However, our findings are not tied to
Jolie. We refer to alternative technologies in Section 6.

3 The EMI Framework for API Refactoring

Distribution

Internal Adjacent External

G
en

er
al

it
y E E E

Parametric M M M
I I I

E E E
Ad-hoc M M M

I I I

Table 1. The EMI framework.

We now present our conceptual
framework for API refactoring –
the EMI framework. It is depicted
in Table 1. We explain it in the
rest of this section.

API refactoring changes both
an interface and its implemen-
tation, while improving at least
one quality attribute [18, 19].
This may affect the external be-
haviour of an API observed by clients, without altering its capabilities.

We introduce some terminology. In the remainder, we refer to the changes
introduced by an API refactoring as the new functionality, bearing in mind that
such functionality does not alter the feature set of the API [19]. In line with
the API domain model of [25], we consider an API to be a collection of opera-
tions that can be invoked by clients. Services can offer APIs through endpoints,
which expose operations at a designated location according to a given transport
protocol. We call such services API providers. We distinguish the API and im-
plementation that we start from and then end up with after a refactoring with
the prefixes original and refactored.

3.1 Generality and distribution

The EMI framework focuses on two dimensions to assess the quality attributes
of the implementation of an API refactoring: generality and distribution.

The generality dimension concerns whether the implementation of the new
functionality depends on or abstracts from the definition of the original API. We
identify two possibilities.
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Fig. 1. Possible choices for distribution.

Ad-hoc The code of the new functionality depends on hardcoded information
on the names, types, or behaviours of the operations in the original API.

Parametric The code of the new functionality abstracts from the names, types,
or behaviours of the operations in the original API.

Generality serves as an indicator of the logical coupling between the new code
and the old. It is significant because API patterns provide, at least conceptually,
reusable solutions to recurring problems. Thus, in a way, generality indicates
how much this reusability is achieved in real code.

The distribution dimension concerns where the code for the new functionality
is located in relation to the original API provider and its clients. There are three
possibilities, depicted in Fig. 1.
Internal The code of the new functionality is mixed with the code of the original
API provider. Thus, they share state. After the refactoring, the original API
provider becomes the refactored API provider.

Adjacent The refactored API provider is a separate service. They have separate
state and are executed independently, but they are deployed such that they can
communicate efficiently through local resources (local memory channels, inter-
process communication, loopback network interfaces, etc.).

External The refactored API provider is a separate service. It is deployed re-
motely from the original, and thus can communicate with it only through net-
work communication.

3.2 EMI scores

The combination of the axes of generality and distribution gives rise to six pos-
sible development strategies, each presenting different trade-offs. To help in nav-
igating these trade-offs, we score each strategy on three quality attributes using
a three-level scale ( , , or ): efficiency (E), maintainability (M),
and isolation (I). We explain each score next.

Efficiency (E)
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E The new functionality is implemented optimally, with no extra over-
head caused by design choices.

E Design choices cause extra overhead in terms of local resources (mem-
ory, local communication, etc.).

E Design choices cause extra overhead in terms of remote resources (e.g.,
network communication).

Maintainability (M)
M The original and refactored API providers can be maintained inde-
pendently.

M The implementations of the new functionality and the original API
provider are separate but tightly coupled.

M The implementations of the new functionality and the original API
provider are completely mixed.

Isolation (I)
I The original and refactored API providers do not share any local re-
sources for their execution.
I The original and refactored API providers share execution resources
(e.g., CPUs, memory), but do not share state and interact purely by means
of the original API.
I The new functionality and the original API implementation share in-
ternal program state (e.g., stack, variables, heap).

The levels of these scales are intentionally broad, in order to avoid being
tied up by very specific technological details. This is in line with the technology-
agnosticism of microservices [4].

3.3 Scoring development strategies

We end the presentation of our framework with an analysis that justifies the EMI
scores of each development strategy, referring also to examples of API patterns
and technologies where relevant.
Ad-hoc/Internal (E M I ) This is the most efficient strat-
egy, because the new functionality is implemented directly by changing the
behaviour of the original API provider. Thus, the code of the new functionality
encounters no unnecessary overhead in integrating with the original implemen-
tation. For example, introducing the Pagination pattern to an implementation
that queries a database gives the possibility to modify the query in order to
retrieve fewer results – those for the page being requested. For the very same
reasons, however, this is also the least maintainable and isolated choice, since
the new code is mixed and shares all resources with the old code. Examples of
this strategy are shown in Sections 4.1 and 5.

Parametric/Internal (E M I ) This strategy trades some
efficiency for maintainability by abstracting from the operation names and be-
haviours of the original API. The code of the new functionality can be reused
across different APIs, but has limited access to changing their behaviour: the
new functionality can only intercept, modify, and conditionally forward request
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and response message to and from the original implementation. Examples of
this strategy are implementations adopting Java Servelet Filters or Express
middleware functions.

Ad-hoc/Adjacent (E M I ) Compared to Ad-hoc/Internal,
implementing the new functionality in a separate component trades some effi-
ciency for partially improved maintainability and isolation. However, the new
functionality remains coupled with the original API (ad-hoc), so changes to the
original API require updating the refactored API provider, too. Thus, maintain-
ability is still not ideal. Improved isolation comes at the cost of some overhead
in the interaction between the refactored and original API providers. Efficiency
is further affected by the new functionality not having access to changing the
internal behaviour of the original API provider. This strategy can be imple-
mented with, for example, the sidecar pattern, the ambassador pattern, or
Jolie’s embedded services (see Section 4.1).

Parametric/Adjacent (E M I ) This strategy has the same
efficiency and isolation characteristics as the previous one, but greatly improved
maintainability by decoupling the implementation of the new functionality from
the operation names and message types of the original API. The sidecar and
ambassador patterns are again useful to implement this strategy. Jolie’s embed-
ded services combined with couriers and interface extenders (see Section 4.1)
offer an interesting solution, because the refactored API can be automatically
and statically computed.

Ad-hoc/External (E M I ) The strategy with the highest
level of isolation, since the new functionality interacts with the original API
provider only via remote access and for this reason, this is the least efficient
one. This strategy does not achieve the highest maintainability score due to the
coupling between the new functionality and the original API. This strategy can
be implemented by developing a proxy service offering the refactored API and
forwarding each invocation to the original API provider when appropriate.

Parametric/External (E M I ) This strategy has the same
efficiency and isolation scores as the previous one, but also the highest main-
tainability score for the same reason given for Parametric/Adjacent.

No strategy scores a perfect nine. The reason lies in the unavoidable tension
between efficiency and isolation: optimal efficiency requires sharing resources,
which prevents achieving optimal isolation.

4 EMI at Work

In this section, we validate our framework by applying it in depth – exploring all
our strategies for a single pattern – and in breadth – applying selected strategies
to other patterns. The code of our examples is available online [12].

4.1 API Key in Jolie

We illustrate the use of our framework by applying each strategy to a concrete use
case: the introduction of the API Key pattern to a service managing a catalogue

https://jakarta.ee/specifications/platform/10/apidocs/jakarta/servlet/filter
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://learn.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://learn.microsoft.com/en-us/azure/architecture/patterns/ambassador
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of scientific publications. API Key identifies clients through respective unique
keys, which must be included in requests.

We code our examples in Jolie [11]. In Jolie, the operations and message
types of an API are defined as an interface. The next interface defines the API
of our publication catalogue service.

1 type Publications: { publications*: Publication }
2 type Publication: Proceeding | InProceeding | Article
3 interface PubCatInterface {
4 RequestResponse: getAuthorPubs( {authorId: string} )( Publications )
5 getConfPubs( {confId: string} )( Publications ) }

PubCatInterface comprises two operations: getAuthorPubs, which expects the
unique identifier of an author (as the field authorId of the request message) and
returns all their publications (message type Publications); and getConfPubs,
which given a conference identifier (confId) returns the publications of that
conference. The type Publications describes a record with a field publications
containing zero or more (*) values of type Publication. Publication is the union
of three types (omitted) corresponding to proceedings (Proceeding), papers in
proceedings (InProceeding), and journal articles (Article).

Interfaces are offered to clients by defining an inputPort, Jolie for an endpoint
that accepts remote invocations. An input port is defined inside of its enclosing
service and commits to a concrete location and transport protocol (HTTP,
SOAP, binary protocols, etc.). The definition of our publication catalogue service
is given next (abstracting some internal implementation details).

Listing 1. Original API Provider.
1 /* Service definition */
2 service PubCat {
3 /* API Endpoint */
4 inputPort ip { location: "socket://localhost:8080"
5 protocol: http { format = "json" } interfaces: PubCatInterface }
6 /* Behaviour */
7 main {
8 [ getAuthorPubs( request )( response ) { /* fetch the data from db */ } ]
9 [ getConfPubs( request )( response ) { /* fetch the data from db */ } ] } }

In Lines 4 to 5, service PubCat exposes PubCatInterface on TCP port 8080
over the HTTP protocol with message payloads in JSON format. Its implemen-
tation (Lines 7 to 9) consists of an input choice that can react to any invocation
of the operations it lists. Each branch in the choice has the form [ op( req )(
resp ){ B } ] where op is the name of the operation, req and resp are the

input and output parameters, and B is the code block computing the response.
Introducing the API Key pattern requires extending request message types

with an additional field apiKey (storing the key as a string) and declaring a
faulty response message NotAuthorised for invocations with invalid keys. The
refactored API is given next.

Listing 2. Refactored API.
1 interface PubCatInterfaceWithAPIKey {
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2 RequestResponse:
3 getAuthorPubs( {authorId: string, apiKey: string} )( Publications )
4 throws NotAuthorised
5 getConfPubs( {confId: string, apiKey: string} )( Publications )
6 throws NotAuthorised }

The refactoring of service PubCat and its interface PubCatInterface to ob-
tain a service exposing the refactored API PubCatInterfaceWithAPIKey can be
accomplished following any of the strategies outlined in Section 3. We discuss
the most interesting aspects of these applications. To see how the code looks in
detail for each strategy, the reader can consult our benchmark [12].

Ad-hoc/Internal We directly modify the code of both the original interface
PubCatInterface and the service PubCat. PubCatInterface becomes the refactored
API PubCatInterfaceWithAPIKey above. In PubCat, instead, the implementation
of each operation is edited to validate the API key in the request message.

1 service PubCat {
2 inputPort ip { /* ... */ interfaces: PubCatInterfaceWithAPIKey }
3 main {
4 [ getAuthorPubs( request )( response ) {
5 /* check validity of request.apiKey */
6 if( isKeyValid ) { /* fetch the data from db */ }
7 else { throw NotAuthorised( /* fault data */ ) } } ]
8 [ getConfPubs( request )( response ){ /* as for getAuthorPubs */ } ] } }

Ad-hoc/External We introduce a new service, PubCatWithAPIKey, with an end-
point exposing the interface PubCatInterfaceWithAPIKey. This service acts as
an adapter for the original API provider, PubCat, which remains unchanged.
The implementation of the API Key pattern is entirely confined to the new
service, which forwards valid invocations to PubCat. This requires the service
PubCatWithAPIKey to declare an output port (Line 2) pointing to the API endpoint
of PubCat. Its implementation (Lines 4 to 11) consists of an input choice where
each operation checks the validity of the key in the request (request.apiKey).
If the key is valid, then the key is erased from request (Line 8) before invok-
ing the original operation getAuthorPubs@pc to obtain the intended response.
Otherwise, the service replies with a faulty NotAuthorised message. Although
the implementations of refactored and original API providers are separate, they
must be kept in sync wrt future changes to the API, resulting in a negative
impact to maintainability.

Listing 3. Ad-hoc/External refactored API provider.
1 service PubCatWithAPIKey {
2 outputPort pc { /* PubCat endpoint */ }
3 inputPort ip { /* ... */ interfaces: PubCatInterfaceWithAPIKey }
4 main {
5 [ getAuthorPubs( request )( response ) {
6 /* check validity of request.apiKey */
7 if( isKeyValid ) {
8 undef( request.apiKey ) /* remove API key before forwarding */
9 getAuthorPubs@pc( request )( response ) /* forward call */

10 } else { throw NotAuthorised( /* fault data */ ) } } ]
11 [ getConfPubs( request )( response ) { /* as for getAuthorPubs */ } ] } }
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Parametric/External To eliminate the coupling between refactored and original
API providers, we leverage the Jolie language construct of an interface extender,
which uniformly extends the types of all operations in an API. The extender
APIKeyExtender defined in Listing 4 adds the apiKey field to all (*) request mes-
sages and NotAuthorised as a new potential faulty response. APIKeyExtender
precisely describes the changes we have to apply to PubCatInterface in order to
obtain PubCatInterfaceWithAPIKey.

Listing 4. Parametric/External refactored API provider.
1 interface extender APIKeyExtender {
2 RequestResponse: *( {apiKey:string} )( void ) throws NotAuthorised
3 }
4 service PubCatWithAPIKey {
5 outputPort pc { /* PubCat endpoint */ }
6 inputPort ip { /* ... */ aggregates: pc with APIKeyExtender }
7 courier ip {
8 [ interface PubCatInterface( request )( response ) {
9 if( isKeyValid ) { forward( request )( response ) }

10 else { throw NotAuthorised( /* fault data */ ) } } ] } }

Service PubCatWithAPIKey now uses the interface extender to define its API:
input port ip aggregates pc with APIKeyExtender (Line 6), which instructs Jolie
to forward messages for the API of pc, extended with APIKeyExtender, to pc.

Messages forwarded by means of aggregation (applications of aggregates)
can be intercepted by means of a courier block. A courier is a piece of code
attached to an input port, which gets executed whenever one of the input port’s
operations is invoked. The courier at Lines 7 to 10 implements the API Key
pattern for all operations of the interface PubCatInterface. Unlike a regular input
choice, a courier can be parametric over the operation names of an interface:

[ interface PubCatInterface( request )( response ){ B } ]

where B is the code that is executed on each invocation of an operation of
PubCatInterface on input port ip, and which can then decide whether to forward
the request to the PubCat service, or return the error message NotAuthorised. The
forward primitive automatically removes fields added by any interface extenders,
so messages to pc are well-typed.

Adjacent strategies Jolie supports running separate services in the same applica-
tion with its native embed primitive: services PubCat and PubCatWithAPIKey can
be implemented as Adjacent by simply changing their deployment configuration.
First, the service PubCat is promoted to an in-memory service by changing its lo-
cation to "local" (Listing 1, Line 4). Then, we make the refactored API provider,
PubCatWithAPIKey (Listings 3 and 4), embed the original PubCat: replacing the
outputPort declaration (Lines 2 and 5) by the statement embed PubCat as pc in-
structs the Jolie runtime to load the service PubCat alongside PubCatWithAPIKey
and make it reachable via an in-memory channel through the output port pc.
These linguistic features allow for easily switching Jolie codebases between the
Adjacent and External columns of the EMI framework, changing the deployment
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strategy based on performance considerations (i.e., trade network overhead for
CPU and memory consumption).

4.2 Other patterns: Merge Endpoints and Version Identifier

We now illustrate how to introduce two other patterns: Merge Endpoints
and Version Identifier. Differently from API Key, these patterns are fully
architectural, in the sense that they do not introduce behavioural changes but
rather affect only how APIs are accessed. We apply the Parametric/External
strategy for both cases.

Merge Endpoints exposes the operations of two endpoints through a single
endpoint. Suppose, for example, that we have a PubCat service for a publication
catalogue and a CitInd service for citation indexing. We develop a new service,
PublicationIndex, that merges their APIs by using aggregation.

1 service PublicationIndex {
2 outputPort pc { // publication catalogue
3 location: /* ... */ protocol: /* ... */ interfaces: PubCatInterface }
4 outputPort ci { // citation index
5 location: /* ... */ protocol: /* ... */ interfaces: CitIndInterface }
6 inputPort ip { location: /* ... */ protocol: /* ... */ aggregates: pc, ci } }

Note that aggregation requires the operations of the aggregated ports to have
distinct names, which is in line with the pattern here. If this is not the case, one
can use the other Jolie feature of redirection, explained in the next case.

Version Identifier exposes two (or more) different versions of the same
API under a single endpoint. Here aggregation does not work, because the op-
eration names in two versions of the same API likely overlap. Jolie solves this
problem by offering the APIs under different resource paths at the same physical
endpoint. In the next example, input port ip offers PubCatInterfaceV1 under
path v1 and PubCatInterfaceV2 under path v2. Assuming that a client reaches
the refactored API provider at location pubcat.com, this means that version 1 will
be accessible at location pubcat.com/v1 and version 2 at location pubcat.com/v2.

1 service PubCatWithAPIKey {
2 outputPort pcv1 { location: /* ... */ protocol: /* ... */
3 interfaces: PubCatInterfaceV1 }
4 outputPort pcv2 { location: /* ... */ protocol: /* ... */
5 interfaces: PubCatInterfaceV2 }
6 inputPort ip { location: /* ... */ protocol: /* ... */
7 redirects: v1 => pcv1, v2 => pcv2 } }

This approach does not alter the original (versions of) the APIs, by distin-
guishing between versions based on the accessed location. Therefore, clients just
need to be connected to the right location. An alternative to this approach is to
extend the request types of all operations with a version identifier. However, this
would require updating the clients to include this information. Furthermore, re-
sponse types would become less precise, since they would need to accommodate
the possible responses across all versions.
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5 API Refactoring Recipes

In this section, we illustrate how our framework can be used to distill recipes
that can be followed mechanically by programmers to apply an API refactoring.
We cover a parametric implementation of the API Key pattern and an ad-
hoc implementation of the Pagination pattern. The latter is representative of
situations where efficiency requires big sacrifices in maintainability and isolation.

We start with our recipe for API Key.

Refactoring recipe: Introduce API Key (Parametric)

Intent. Introduce the API Key pattern by means of a dedicated service that is
parametric on the original API.

Participants and Preconditions.
1. Participant: A Jolie service, say Original, exposing the API subject to refac-

toring as an interface, say OriginalAPI.
2. Precondition: Original offers OriginalAPI through an input port Original-

InputPort.

Refactoring steps.
1. Introduce an interface extender APIKeyExtender that:
(a) Extends the request message with a field apiKey holding an API Key.
(b) Adds a faulty response message NotAuthorised.

2. Introduce a new service OriginalWithAPIKey:
(a) Introduce a new output port original.
(b) Choose between:

Choice 1 (External): Configure output port original (at OriginalWith-
APIKey) and input port OriginalInputPort (at Original) so that they
communicate via the network.

Choice 2 (Adjacent): Configure output port original (at OriginalWith-
APIKey) and input port OriginalInputPort (at Original) so that they
communicate via local memory.

(c) Introduce an input port ip that aggregates the output port original and
extends it with APIKeyExtender.

(d) Introduce a courier for ip that intercepts all operations of OriginalAPI
and:
i. Checks the validity of the API Key.
ii. If the key is valid, forwards the request to original.
iii. Otherwise, if the key is invalid, replies with the NotAuthorised response.

Postconditions.
1. Invoking any operation op at OriginalWithAPIKey with a valid API Key gives

the same response message as invoking op at Original without an API Key.
2. Invoking any operation op at service OriginalWithAPIKey with an invalid API

Key results into an NotAuthorised message.
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3. Service OriginalWithAPIKey becomes the only client of service Original.

Discussion and EMI scoring. This recipe yields a parametric implementation, giv-
ing maintainability score M . Choice 1 introduces network overhead, giving
E and I , while Choice 2 does not, yielding E and I . We
get the following possible EMI scores:
Choice 1 (External): E M I .
Choice 2 (Adjacent): E M I .

We now present a recipe for the Pagination pattern. Pagination allows
clients to retrieve smaller portions (‘pages’) of large data sets. The aim is to
improve network and memory utilisation; this also addresses the stability an-
tipattern of providing responses of unbounded size [14]. There are four variants
of this pattern, corresponding to four different ways of identifying the page that
the client wants [24,25]. Here, we implement the offset-based version.

Refactoring recipe: Introduce Pagination (Ad-hoc/Internal)

Intent. Introduce the offset-based Pagination pattern for an operation.

Participants and Preconditions.
1. Participant: A Jolie service, say Original, exposing the operation subject to

refactoring, say op, as part of an interface, say OriginalAPI.
2. Precondition: op is a retrieval operation whose response type contains an

ordered collection of items to be paginated.

Refactoring steps.
1. Change the definition of op in OriginalAPI to:
(a) Extend the request type with metadata fields specifying the offset of the

requested page, the limit of items per page, and the sort-criterion, if
more than one order exists for items in the collection;

(b) Extend the response type with fields describing the response page such as
the page number offset, items per page limit, sort-criterion, and total
number of pages.

(c) Add a faulty response message InvalidPageRequest in case of invalid page
metadata.

2. Change the implementation of op to:
(a) Validate the page metadata fields (and reply immediately with Invalid-

PageRequest in case of failure).
(b) Paginate the requested data, possibly by leveraging features of the data-

base query language (like OFFSET and LIMIT for SQL).
(c) Reply with the requested page and its metadata.

Postconditions.
1. Calling op to request page with a given offset and size limit results into the

items of the collection returned by the original op from position offset *
limit to position offset * limit + limit.
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Discussion. Delegating the pagination to the query language of the database
in use achieves efficiency score E . However, since it also modifies the im-
plementation of the specific operation, we obtain maintainability M and
isolation I . The overall EMI score is therefore E M I .

Considerations on alternative implementations. The design smells that moti-
vate the introduction of the Pagination pattern are about poor efficiency and
thus the Ad-hoc/Internal strategy is a natural choice. If Ad-hoc/Internal is un-
desirable, other strategies can still be adopted at the cost of high decreases in
efficiency. The key problem is distribution. Choosing an Adjacent strategy would
still imply that the original API provider fetches all data from its database, but
at least this would be ‘cut’ by the refactored API provider before it is sent back
to clients. The same holds for an External strategy, but in this case we would
pay also the cost of network communication (of the whole data set) between the
refactored and original API providers.

6 Threats to Validity

Our validation of EMI has two main limitations, discussed next.
1. We have explored the application of EMI through a single language (Jolie).

There are many other languages and frameworks for programming service-
oriented systems, including Spring Boot, Express for Node.js, Ballerina [16],
and WS-BPEL [15]. The mechanics and behaviours offered by Jolie’s prim-
itives can be achieved in these technologies, sometimes requiring the use of
a framework. For example, aggregation and redirection – Jolie for merging
and redirecting endpoints – can be implemented via the routing mechanism
in Express. We are thus confident that our validation can be reproduced be-
yond Jolie. However, this requires a dedicated and systematic study, which
our benchmark offers a good starting point for.

2. Our validation consists of a sample of four refactoring patterns out of the
22 identified by the Interface Refactoring Catalogue. We have selected this
sample because of two main reasons: (i) the API design patterns that they
introduce are widely known, and (ii) they are illustrative of the trade-offs
between the EMI quality aspects since they do not have a clearly optimal
implementation strategy. Nonetheless, the selection remains in part subjec-
tive and thus it calls for an exhaustive study of the remaining 18 patterns.

7 Conclusion

We have introduced the EMI framework, the first conceptual framework for
navigating the implementation aspects of API refactorings. While broad and
technology-agnostic, our scores are informative when it comes to key design de-
cisions on the implementation of API patterns.

Our study opens up at least three interesting lines of future work.

https://spring.io/projects/spring-boot
https://expressjs.com/
https://interface-refactoring.github.io
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First, in line with previous work [19], we have focused on presenting API
refactorings that add a pattern. However, our Adjacent and External strategies
make it immediate to remove a pattern later on. We think that enabling the
modular activation and deactivation of patterns is an interesting direction.

The second line of future work deals with exploring additional aspects on
top of efficiency, maintainability, and isolation. These aspects are in line with a
previous survey on what qualities are important in practice, but there are also
others that merit consideration, like scalability and usability [2, 18]. We think
that scalability would be a first natural extension of our framework, as it is
closely related to efficiency and isolation but not completely captured by them.

Lastly, it would be interesting to extend our evaluation – which focuses on ap-
plicability – to a systematic user study, involving practitioners in the field of API
design and implementation. This would allow us to better understand how easy
it is to use EMI for (i) communicating the trade-offs between different strategies,
(ii) choosing appropriate strategies, and (iii) facilitating the implementation of
API refactorings (possibly for people with different skill levels).
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